How was the celebration of knowledge?
A) Very Easy
B) Just ok
C) Tough
D) Spring break made me forget about it
E) I do not want to talk about it
BACKGROUND OF CLOUD COMPUTING

1980’s and 1990’s: 52% growth in performance per year!

2002: The thermal wall
- Speed (frequency) peaks, but transistors keep shrinking

2000’s: Multicore revolution
- 15-20 years later than predicted, we have hit the performance wall

2010’s: Rise of Big Data
SOURCES DRIVING BIG DATA

It’s All Happening On-line

Every:
 - Click
 - Ad impression
 - Billing event
 - Fast Forward, pause,…
 - Friend Request
 - Transaction
 - Network message
 - Fault,…

User Generated (Web & Mobile)

Internet of Things / M2M

Scientific Computing
DATA DELUGE

Billions of users connected through the net
- WWW, FB, twitter, cell phones, …
- 80% of the data on FB was produced last year

Storage getting cheaper
- Store more data!
DATA GROWS FASTER THAN MOORE’S LAW

Projected Growth

- Moore’s Law
- Particle Accel.
- DNA Sequencers

Increase over 2010

SOLVING THE IMPEDANCE MISMATCH

Computers not getting faster, and we are drowning in data

• How to resolve the dilemma?

Solution adopted by web-scale companies

• Go massively distributed and parallel
ENTER THE WORLD OF DISTRIBUTED SYSTEMS

Distributed Systems/Computing

- *Loosely coupled* set of computers, communicating through message passing, solving a common goal
- Tools: Msg passing, Distributed shared memory, RPC

Distributed computing is *challenging*

- Dealing with *partial failures* (examples?)
- Dealing with *asynchrony* (examples?)
- Dealing with *scale* (examples?)
- Dealing with *consistency* (examples?)

Distributed Computing versus Parallel Computing?

- distributed computing = parallel computing + partial failures
THE DATACENTER IS THE NEW COMPUTER

“The datacenter as a computer” still in its infancy

- Special purpose clusters, e.g., Hadoop cluster
- Built from less reliable components
- Highly variable performance
- Complex concepts are hard to program (low-level primitives)
DATA CENTER
If the datacenter/cloud is the new computer

- What is its **Operating System**?
- Note that we are not talking about a host OS

Could be equivalent in benefit as the LAMP stack was to the .com boom – every startup *secretly* implementing the same functionality!

Open source stack for a Web 2.0 company:

- **Linux** OS
- **Apache** web server
- **MySQL**, MariaDB or MongoDB DBMS
- **PHP**, Perl, or Python languages for dynamic web pages
CLASSICAL OPERATING SYSTEMS

Data sharing

• Inter-Process Communication, RPC, files, pipes, …

Programming Abstractions

• Libraries (libc), system calls, …

Multiplexing of resources

• Scheduling, virtual memory, file allocation/protection, …
Data sharing

- Google File System, key/value stores
- Apache project: Hadoop Distributed File System

Programming Abstractions

- Google MapReduce
- Apache projects: Hadoop, Pig, Hive, Spark

Multiplexing of resources

- Apache projects: Mesos, YARN (MapReduce v2), ZooKeeper, BookKeeper, …
Google File System (GFS), 2003

- Distributed File System for entire cluster
- Single namespace

Google MapReduce (MR), 2004

- Runs queries/jobs on data
- Manages work distribution & fault-tolerance
- Colocated with file system

Apache open source versions: Hadoop DFS and Hadoop MR
HADOOP DISTRIBUTED FILE SYSTEM

Files split into 128MB *blocks*
Blocks replicated across several *datanodes* (usually 3)
Single *namenode* stores metadata (file names, block locations, etc)
Optimized for large files, sequential reads
Files are append-only

Data *striped* on hundreds/thousands of servers

- Scan 100 TB on 1 node @ 50 MB/s = 24 days
- Scan on 1000-node cluster = 35 minutes

Namenode

Datanodes
The chance of a machine failing in 24h is 0.1%

What is the likelihood that one machine in a cluster of 1000 machines fails in 24h?

a) 0.1%
b) 10%
c) 63%
d) 99.999%
Failures will be the norm

Mean time between failures for 1 node = 3 years
Mean time between failures for 1000 nodes = 1 day

Use commodity hardware

Failures are the norm anyway, buy cheaper hardware

No complicated consistency models

Single writer, append-only data
WHAT IS MAPREDUCE?

Simple data-parallel programming model designed for scalability and fault-tolerance

Pioneered by Google
• Processes 20 petabytes of data per day

Popularized by open-source Hadoop project
• Used at Yahoo!, Facebook, Amazon, …
WHAT IS MAPREDUCE USED FOR?

• **At Google:**
 – Index building for Google Search
 – Article clustering for Google News
 – Statistical machine translation

• **At Yahoo!**:
 – Index building for Yahoo! Search
 – Spam detection for Yahoo! Mail

• **At Facebook**:
 – Data mining
 – Ad optimization
 – Spam detection
TYPICAL HADOOP CLUSTER

40 nodes/rack, 1000-4000 nodes in cluster

1 Gbps bandwidth within rack, 8 Gbps out of rack

Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)
CHALLENGES

Cheap nodes fail, especially if you have many

Mean time between failures for 1 node = 3 years
Mean time between failures for 1000 nodes = 1 day

Solution: Build fault-tolerance into system

Commodity network = low bandwidth

Solution: Push computation to the data

Programming distributed systems is hard

Solution: Data-parallel programming model: users write “map” & “reduce” functions, system distributes work and handles faults
Data type: key-value records

Map function:

\[(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter})\]

Reduce function:

\[(K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out})\]
def mapper(line):
 foreach word in line.split():
 output(word, 1)

def reducer(key, values):
 output(key, sum(values))
WORD COUNT EXECUTION

Input: the quick brown fox, the fox ate the mouse, how now brown cow

Map: the, 1; brown, 1; fox, 1; the, 1; fox, 1; the, 1; how, 1; now, 1; brown, 1; how, 1; now, 1; brown, 1; fox, 1; the, 1; mouse, 1; cow, 1; quick, 1

Shuffle & Sort:

Reduce: brown, 2; fox, 2; how, 1; now, 1; the, 3; ate, 1; cow, 1; mouse, 1; quick, 1

Output:
Single *master* controls job execution on multiple *slaves*

Mappers preferentially placed on same node or same rack as their input block
- Minimizes network usage

Mappers save outputs to local disk before serving them to reducers
- Allows recovery if a reducer crashes
- Allows having more reducers than nodes
A combiner is a local aggregation function for repeated keys produced by the same map. It works for associative functions like sum, count, or max. It decreases the size of intermediate data. An example of map-side aggregation for Word Count:

```python
def combiner(key, values):
    output(key, sum(values))
```
WORD COUNT WITH COMBINER

Input Map & Combine Shuffle & Sort Reduce Output

the quick
brown
fox

the fox ate
the mouse

how now
brown cow

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1
1. If a task crashes:
 - Retry on another node
 - OK for a map because it has no dependencies
 - OK for reduce because map outputs are on disk
 - If the same task fails repeatedly, fail the job or ignore that input block (user-controlled)

> Note: For these fault tolerance features to work, your map and reduce tasks must be side-effect-free
2. If a node crashes:

- Re-launch its current tasks on other nodes
- Re-run any maps the node previously ran
 - Necessary because their output files were lost along with the crashed node
3. If a task is going slowly (straggler):
- Launch second copy of task on another node (“speculative execution”)
- Take the output of whichever copy finishes first, and kill the other

- Surprisingly important in large clusters
 - Stragglers occur frequently due to failing hardware, software bugs, misconfiguration, etc
 - Single straggler may noticeably slow down a job
TAKEAWAYS

By providing a data-parallel programming model, MapReduce can control job execution in useful ways:

- Automatic division of job into tasks
- Automatic placement of computation near data
- Automatic load balancing
- Recovery from failures & stragglers

User focuses on application, not on complexities of distributed computing.
MAPREDUCE PROS

Distribution is completely transparent
- Not a single line of distributed programming (ease, correctness)

Automatic fault-tolerance
- Determinism enables running failed tasks somewhere else again
- Saved intermediate data enables just re-running failed reducers

Automatic scaling
- As operations as side-effect free, they can be distributed to any number of machines dynamically

Automatic load-balancing
- Move tasks and speculatively execute duplicate copies of slow tasks (stragglers)