Algorithm Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sankoff’s & Fitch’s Alg.</td>
<td>Characters, T</td>
<td>A, B</td>
</tr>
<tr>
<td>Perfect Phylogeny</td>
<td>Characters</td>
<td>A, B, T</td>
</tr>
<tr>
<td>Felsenstein</td>
<td>Characters, T, B</td>
<td>A</td>
</tr>
</tbody>
</table>

T = tree topology
B = branch lengths
A = ancestral states
Pairwise Compatibility Test
(Wilson 1965)

Binary characters i and j are pairwise compatible if and only if:

- j is homogenous w.r.t i_0 or i_1.

Equivalently:

- i_1 and j_1 are disjoint or one contains the other

Equivalently:

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A 0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>B 0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>C 1</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D 1</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>E 0</td>
</tr>
</tbody>
</table>

All 4 rows do **not** exist

$(0,0)$, $(0,1)$, $(1,0)$, $(1,1)$

Pairwise Compatibility Theorem
(Estabrook et al. 1976)

A set S of binary characters is mutually compatible if and only if all pairs c and c' of characters in S are pairwise compatible.

Pairwise compatibility \leftrightarrow mutual compatibility.
Perfect Phylogeny

A set of mutually compatible binary characters gives a **perfect phylogeny**:

1. **Evolutionary model**
 - Binary characters {0,1}
 - Each character changes state only once in evolutionary history (no homoplasies!).
2. **Tree in which every mutation is on an edge of the tree**.
 - All the species in one sub-tree contain a 0, and all species in the other contain a 1.
 - For simplicity, assume root = (0, 0, 0, 0, 0)

Last time: algorithm to reconstruct a tree.

Trees and Splits

- Given a set X, a **split** is a partition of X into two non-empty subsets A and B. $X = A \mid B$.
- For a phylogenetic tree T with leaves L, each edge e defines a split $L_e = A \mid B$, where A and B are the leaves in the subtrees obtained by removing e.

In perfect phylogeny, edges where binary character changes state gave split i_0 and i_1.

We will return to splits in a future lecture.
Splits Equivalence Theorem

A phylogenetic tree T defines a collection of splits \(\Sigma(T) = \{ L_e \mid e \text{ is edge in } T \} \).

Splits \(A_1 \mid B_1 \) and \(A_2 \mid B_2 \) are \textit{pairwise compatible} if at least one of \(A_1 \cap A_2 \), \(A_1 \cap B_2 \), \(B_1 \cap A_2 \), and \(B_1 \cap B_2 \) is the empty set.

Splits Equivalence Theorem: Let \(\Sigma \) be a collection of splits. There is a phylogenetic tree such that \(\Sigma(T) = \Sigma \) if and only if the splits in \(\Sigma \) are pairwise compatible.

The Pairwise Compatibility Theorem (for binary characters) follows from this theorem.

Outline

Distance-based methods for phylogenetic tree reconstruction.

- Review of distances/metrics.
- Tree distances and additive distances
 - Small and large phylogeny problems.
- Non-additive distances and clustering
 - UPGMA and ultrametric distances.
Distances

A **distance** on a set X is a function $d: X \rightarrow \mathbb{R}$ satisfying:
- $d(x, y) \geq 0$, with equality iff $x = y$.
- For all $x, y \in X$, $d(x, y) = d(y, x)$ [symmetry]
- For all $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$ [triangle inequality]

Examples:
- $X = \text{real numbers}$, $d(x, y) = |x - y|$ is distance.
- $X = \text{strings over some alphabet}$, $d_H(s, t) =$ number of positions where s and t differ is called Hamming distance.

Distances in Biological Data

- String distances (e.g. Hamming distance, edit distance) on DNA/protein sequence data
- Substitution model (Jukes-Cantor, Kimura, etc.): scores for particular changes $A \rightarrow T, C \rightarrow G, \text{etc.}$

Rat: $\text{ACAGTCACGCCCCACACGT}$
Mouse: $\text{ACAGTGACCCACACACGT}$
Gorilla: $\text{CCTGTACGTAAACAAACGA}$
Chimpanzee: $\text{CCTGTAGGTAGAAACAGA}$
Human: $\text{CCTGTAGGTAGACACAGA}$
Distance Matrix

• For \(n \) species, form \(n \times n \) distance matrix \(D_{ij} \)
• Example: \(D_{ij} = \) edit distance between a gene in species \(i \) and species \(j \).

<table>
<thead>
<tr>
<th></th>
<th>Mouse:</th>
<th>Gorilla:</th>
<th>Chimpanzee:</th>
<th>Human:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACATGACGCCACACACCT</td>
<td>CCTGCGACGTAAACAAACG</td>
<td>CCTGCCAGTACAAACACG</td>
<td>CCTGCCAGTACACACG</td>
</tr>
<tr>
<td>Mouse:</td>
<td>0 7 11 10</td>
<td>7 0 4 6</td>
<td>11 4 0 2</td>
<td>10 6 2 0</td>
</tr>
<tr>
<td>Gorilla:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimpanzee:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alignment vs. Distance Matrix

Sequence a gene of length \(m \) in \(n \) species \(\rightarrow n \times m \) alignment matrix.

Reverse transformation not possible due to loss of information.
Distances in Trees

Given a tree T with a positive weight $w(e)$ on each edge, we define the **tree distance** d_T on the set L of leaves by:

$$d_T(i, j) = \text{sum of weights of edges on unique path from } i \text{ to } j.$$

In evolutionary biology, weights are sometimes called **branch lengths**.

Distance in Trees: an Example

$$d_T(1,4) = 12 + 13 + 14 + 17 + 13 = 69$$
Distance vs. Tree Distance

- $n \times n$ distance matrix for n species
- Note that $d_T(i,j)$, tree distance between i and j, not necessarily equal to D_{ij} as given by distance matrix.

Rat: ACGTGACGCCCAACGCT
Mouse: ACGTGACGCTACAAAAACGT
Gorilla: CCTGTGACCTAAACACGA
Chimpanzee: CCTGTGACCTAGCACAACGA
Human: CCTGTGACCTAGCACAACGA

Fitting a Distance Matrix

- Given n species, we can compute the $n \times n$ distance matrix D_{ij}
- Evolution of these species is described by a tree that we don’t know.
- We need an algorithm to construct a tree that best fits the distance matrix D_{ij}

Find a tree T such that:

\[
D_{ij} = d_T(i,j)
\]

Distance between species (known)
Distance Based Phylogeny Problem

Goal: Reconstruct an evolutionary tree from a distance matrix

Input: \(n \times n \) distance matrix \(D_{ij} \)

Output: weighted tree \(T \) with \(n \) leaves fitting \(D \)

Unknown topology of tree makes evolutionary tree reconstruction **hard**!

unrooted binary trees \(n \) leaves: \(T(n) = \frac{(2n-3)!}{((n-2)! \times 2^{n-2})} \)

\(n = 24: T(n) = 5.74 \times 10^{26} \)

If \(D \) is **additive**, this problem has a solution and there is a simple algorithm to solve it.

Distance-based vs. character-based

Key difference:

Distance-based methods do not reconstruct ancestral states.

```
   A
   / \1
  /   \0
 A  B  C  D
 A  0   1   2   2
 B  1   0   1   1
 C  2   1   0   0
 D  2   1   0   0
```

Note that C and D are identical.
Reconstructing a 3 Leaved Tree

- Tree reconstruction for a 3x3 matrix is straightforward
- We have 3 leaves i, j, k and a center vertex c

![Diagram of a 3-leaved tree with distances and equations]

Observe:

\[
\begin{align*}
 d_{ic} + d_{jc} &= D_{ij} \\
 d_{ic} + d_{kc} &= D_{ik} \\
 d_{jc} + d_{kc} &= D_{jk}
\end{align*}
\]

Reconstructing a 3 Leaved Tree (cont’d)

\[
\begin{align*}
 d_{ic} + d_{jc} &= D_{ij} \\
 + d_{ic} + d_{kc} &= D_{jk} \\
 2d_{ic} + d_{jc} + d_{kc} &= D_{ij} + D_{ik} \\
 2d_{ic} + D_{jk} &= D_{ij} + D_{ik} \\
 d_{ic} &= (D_{ij} + D_{ik} - D_{jk})/2
\end{align*}
\]

Similarly,

\[
\begin{align*}
 d_{jc} &= (D_{ij} + D_{jk} - D_{ik})/2 \\
 d_{kc} &= (D_{ki} + D_{kj} - D_{ij})/2
\end{align*}
\]
Trees with > 3 Leaves

• A binary tree with n leaves has $2n-3$ edges

• Fitting a given tree to a distance matrix D requires solving a system with $n(n-1)/2$ equations and $2n-3$ variables

• Solution not always possible for $n > 3$.

Additive Distance Matrices

Matrix D is ADDITIVE if there exists a tree T with $d_{ij}(T) = D_{ij}$

Matrix D is NON-ADDITIVE otherwise

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 2 & 4 & 4 \\
B & 2 & 0 & 4 & 4 \\
C & 4 & 4 & 0 & 2 \\
D & 4 & 4 & 2 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 2 & 2 & 2 \\
B & 2 & 0 & 3 & 2 \\
C & 2 & 3 & 0 & 2 \\
D & 2 & 2 & 2 & 0 \\
\end{array}
\]
Additive Distance Phylogeny

Small Additive Distance Phylogeny: Given phylogenetic tree T and distance matrix D, determine branch lengths such that $d_{T}(i,j) = D_{ij}$.

Large Additive Distance Phylogeny: Given distance matrix D, find T and branch lengths such that $d_{T}(i,j) = D_{ij}$.

Both of these problems can be solved efficiently.

Reconstructing Additive Distances

Given T

<table>
<thead>
<tr>
<th></th>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>0</td>
<td>10</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>w</td>
<td>0</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>9</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If we know T and D, but do not know the length of each edge, we can reconstruct those lengths.
Reconstructing Additive Distances Given T

\[
\begin{array}{cccccc}
 & v & w & x & y & z \\
v & 0 & 10 & 17 & 16 & 16 \\
w & 0 & 15 & 14 & 14 \\
x & 0 & 9 & 14 \\
y & 0 & 14 \\
z & 0 \\
\end{array}
\]

Find neighbors v, w (common parent)

\[
\begin{align*}
\text{d}_{ax} &= \frac{1}{2} (d_{ax} + d_{wx} - d_{vw}) \\
\text{d}_{ay} &= \frac{1}{2} (d_{ay} + d_{wy} - d_{vw}) \\
\text{d}_{az} &= \frac{1}{2} (d_{az} + d_{wz} - d_{vw})
\end{align*}
\]
Reconstructing Additive Distances
Given T

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neighbors x, y (common parent)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

d(a, c) = 3
\[d(b, c) = d(a, b) - d(a, c) = 3 \]
\[d(c, z) = d(a, z) - d(a, c) = 7 \]
\[d(b, x) = d(a, x) - d(a, b) = 5 \]
\[d(b, y) = d(a, y) - d(a, b) = 4 \]
\[d(a, w) = d(z, w) - d(a, z) = 4 \]
\[d(a, v) = d(z, v) - d(a, z) = 6 \]
Correct!!!

Trees and Neighbors

Previous algorithm relied only on finding neighboring leaves:

1. Find neighboring leaves \(i\) and \(j\) with parent \(k\)
2. Remove the rows and columns of \(i\) and \(j\)
3. Add a new row and column corresponding to \(k\), where the distance from \(k\) to any other leaf \(m\) can be computed as: \[D_{km} = \frac{D_{im} + D_{jm} - D_{ij}}{2} \]

Compress \(i\) and \(j\) into \(k\), iterate algorithm for rest of tree
Finding Neighboring Leaves

To find neighboring leaves we simply select a pair of closest leaves.

\[
\begin{array}{cccc}
 & i & j & k & l \\
i & 0 & 13 & 21 & 22 \\
j & 0 & 12 & 13 & \\
k & 0 & 13 & \\
l & 0 & \\
\end{array}
\]

\[d_{ij} = 13 > d_{jk} = 12\]

Finding a pair of neighboring leaves is a nontrivial problem!

Degenerate Triples

- A degenerate triple is a set of three distinct elements \(1 \leq i, j, k \leq n\) where

\[D_{ij} + D_{jk} = D_{ik}\]

- Element \(j\) in a degenerate triple \(i,j,k\) lies on the evolutionary path from \(i\) to \(k\) (or is attached to this path by an edge of length 0).
Looking for Degenerate Triples

- If distance matrix D has a degenerate triple i,j,k then j can be “removed” from D thus reducing the size of the problem.
- If distance matrix D does not have a degenerate triple i,j,k, one can “create” a degenerate triple in D by shortening all hanging edges (in the tree).

Shortening Hanging Edges to Produce Degenerate Triples

- Shorten all “hanging” edges (edges that connect leaves) until a degenerate triple is found.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>0</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>8</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\delta = 1 \]
Finding Degenerate Triples

• If there is no degenerate triple, all hanging edges are reduced by the same amount δ, so that all pair-wise distances in the matrix are reduced by 2δ.

• Eventually this process collapses one of the leaves (when $\delta = \text{length of shortest hanging edge}$), forming a degenerate triple i,j,k and reducing the size of the distance matrix D.

• The attachment point for j can be recovered in the reverse transformations by saving D_{ij} for each collapsed leaf.

Reconstructing Trees for Additive Distance Matrices

Trim(D, δ) for all $1 \leq i \neq j \leq n$

$D_{ij} = D_{ij} - 2\delta$
AdditivePhylogeny Algorithm

AdditivePhylogeny(D)
if D is a 2 x 2 matrix
 T = tree of a single edge of length D_{1,2}
 return T
if D is non-degenerate
 Compute trimming parameter δ
 Trim(D, δ)
 Find a triple i, j, k in D such that D_{ij} + D_{jk} = D_{ik}
 x = D_{ij}
 Remove jth row and jth column from D
 T = AdditivePhylogeny(D)
Traceback

AdditivePhylogeny (cont’d)

Traceback
Add a new vertex v to T at distance x from i to k
Add j back to T by creating an edge (v,j) of length 0
for every leaf l in T
 if distance from l to v in the tree ≠ D_{l,j}
 output “matrix is not additive”
return
Extend all “hanging” edges by length δ
return T

Question: How to compute δ?
Additive Distance

• How to tell if D is additive?
• AdditivePhylogeny provides a way to check if distance matrix D is additive

• An even more efficient additivity check is the “four-point condition”

The Four Point Condition
(Zaretskii 1965, Buneman 1971)

Let $1 \leq i,j,k,l \leq n$ be four distinct leaves in a tree

Compute: 1. $D_{ij} + D_{kl}$, 2. $D_{ik} + D_{jl}$, 3. $D_{il} + D_{jk}$

2 and 3 represent the same number: (length of all edges) + 2 * (length middle edge)

1 represents a smaller number: (length of all edges) – (length middle edge)
The Four Point Condition

Four point condition: Every four leaves (quartet) can be labeled as i,j,k,l such that:

$$D_{ij} + D_{kl} \leq D_{ik} + D_{jl} = D_{il} + D_{jk}$$

Theorem: An $n \times n$ matrix D is additive if and only if the four point condition holds for every quartet $1 \leq i,j,k,l \leq n$.

Proof:

Since D additive, $D = d_T$. Find split such that:

$i, j \in S_1$ and $k, l \in S_2$. Define λ_m to be weights in tree below.

$$D_{ik} + D_{jl} = (\lambda_1 + \lambda_3 + \lambda_4) + (\lambda_2 + \lambda_3 + \lambda_5) = D_{il} + D_{jk}$$

$$\geq (\lambda_1 + \lambda_2) + (\lambda_4 + \lambda_5).$$

![Diagram of tree with weights](image)
Non-additive Distances

• What if there is no tree T such that $D_{ij} = d_T(i,j)$.

• Approaches:
 1. Find tree such that minimizes “error”

Least Squares Distance Phylogeny Problem

• If the distance matrix D is NOT additive, then we look for a tree T that approximates D the best:

$$\text{Squared Error} : \sum_{i,j} (d_{ij}(T) - D_{ij})^2$$

• Squared Error is a measure of the quality of the fit between distance matrix and the tree: we want to minimize it.

• Least Squares Distance Phylogeny Problem:
 – Find approximation tree T with minimum squared error for a non-additive matrix D.
 – (NP-hard)
Tree construction as clustering

Pair Group Methods

Iteratively combine closest leaves/groups into larger groups.

\[C \leftarrow \{ \{1\}, \ldots, \{n\} \} \]

While \(|C| > 2\) do

[Find closest clusters.]

\[d(C_i, C_j) = \min d(C_i, C_j). \]

\[C_k \leftarrow C_i \cup C_j \]

[Replace \(C_i\) and \(C_j\) by \(C_k\).]

\[C \leftarrow (C \setminus C_i \setminus C_j) \cup C_k. \]
Pair Group Methods

What is d?

How to define branch lengths?

$C \leftarrow \{ \{1\}, \ldots, \{n\} \}$

While $|C| > 2$ do

[Find closest clusters.]

$d(C_i, C_j) = \min d(C_i, C_j)$.

$C_k \leftarrow C_i \cup C_j$

[Replace C_i and C_j by C_k.]

$C \leftarrow (C \setminus C_i \setminus C_j) \cup C_k$.

UPGMA
Unweighted Pair Group Method with Averages

• Distance between clusters defined as average pairwise distance

• Assigns height to every vertex in the tree, effectively dating every vertex
UPGMA

Unweighted Pair Group Method with Averages

Distance between clusters defined as *average pairwise distance*

Given two disjoint clusters C_i, C_j of sequences,

$$d_{ij} = \frac{1}{|C_i| \times |C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}$$

UPGMA

Assigns *height* to every vertex in the tree, effectively dating every vertex

Add a vertex connecting C_i, C_j *and* place it at height $d_{ij}/2$
UPGMA Algorithm

Initialization:
Assign each \(x_i \) to its own cluster \(C_i \)
Define one leaf per sequence, each at height 0

Iteration:
Find two clusters \(C_i \) and \(C_j \) such that \(d_{ij} \) is min
Let \(C_k = C_i \cup C_j \)
Add a vertex connecting \(C_i \) and \(C_j \) and place it at height \(d_{ij}/2 \)
Delete \(C_i \) and \(C_j \)

Termination:
When a single cluster remains

Trees from UPGMA

UPGMA produces an **ultrametric** tree; distance from the root to any leaf is the same

The Molecular Clock:
The evolutionary distance between species \(x \) and \(y \) is twice the Earth time to reach the nearest common ancestor
That is, the molecular clock has constant rate in all species
UPGMA’s Weakness: Example

Correct tree

UPGMA

Ultrametrics

D_{ij} is an ultrametric provided for all species i, j, k (distinct leaves of tree) two of the distances D_{ij}, D_{jk} and D_{ik} are equal and \geq the third.

Ex. $d(i,k) = d(j,k) \geq d(i,j)$

Proposition: If d is ultrametric, then d is additive.
Ultrametrics

Both additive distance phylogeny and perfect phylogeny can be reduced to the ultrametric phylogeny problem.

Let $v = \text{row of } D \text{ containing largest entry } m_v$.
Define $D_{ij}' = m_v + \frac{(D_{ij} - D_{vi} - D_{vj})}{2}$

\[= m_v - \lambda_3 \]

Theorem: D is additive if and only if D' is ultrametric.
(See Gusfield, Ch. 17)