LECTURE 6
Announcements
Minecraft 3 Feedback

• Infinite worlds!
• Terrain looks good
• Gameplay is rather varied
• Happy Birthday Hassan!
The “Voxel” Engine

• You’re done with your first collision engine!
 – Environment representation
 – Collision detection/response
 – Raycasting
• You *can* use this engine for your final!
 – Not a lot of people do, but there’s a ton of potential
• The “geometric” engine provides a similar feature set, but with a different representation
 – More on this in a bit...
Platformer

• A game that minimally involves platforms
• Not based on any game in particular
 – Super Mario 64?
 – Team Fortress 2?
• Completely up to you to make unique gameplay
Breakdown

• Week 1 (collision debugger)
 – Raycasting (common)
 – Collision detection (geometric)
• Week 2
 – OBJ loading (common/geometric)
 – Collision response (geometric)
• Week 3
 – Pathfinding (geometric)
 – String pulling (geometric)
• Week 4
 – UI (common)
 – Gameplay (game)
QUESTIONS?
LECTURE 6
The Geometric Engine
The Geometric Engine

MOTIVATION
To Review

- Entity movement models are dependent on collisions
- Collision are different for:
 - Entity-entity collisions
 - Entity-environment collisions
- All of this controls player movement
Voxel is nice...

• AABB + block based world makes it easy to:
 – Collide
 – Raycast
 – Manipulate the world
• Great for a number of gameplay aesthetics:
 – World generation/exploration
 – Construction
...but not always great

• What if I want:
 – Slopes/ramps/curved surfaces
 – Non 90 degree angles
 – Environment objects of varying size

• In Minecraft, some of these issues can be solved with mods, some can’t
What do we really want?

• Arbitrary environment representation
 – Not restricted to a grid or size
• Arbitrary shapes in that environment
 – Allow for sloped surfaces
 – Allow for approximated curved surfaces
• We want TRIANGLES!
• What shape should entities be?
 – Collisions pointless w/o movement
Shape: AABB

• Pros:
 – Simple collision test for axis-aligned worlds

• Cons:
 – Entities don’t have same diameter in all directions
 – Complicated collision test for arbitrary worlds
 – Entities “hover” on slopes
 – Stairs need special handling
Shape: Cylinder

- **Pros:**
 - Entities have same diameter in all directions

- **Cons:**
 - Collisions even more complicated by caps
 - Same slope hover problem
 - Same stairs problem
Shape: Upside-down cone

• **Pros:**
 – Entities don’t hover on slopes
 – Entities naturally climb stairs (kinda)

• **Cons:**
 – Still more complicated collision tests
 – Sliding like this may be undesirable
Shape: Ellipsoid

• Pros:
 – Simpler collisions than any of the others for arbitrary triangle world
 – Entities closer to the ground on slopes
 – Entities still climb stairs (if they’re low enough)

• Cons:
 – Entities “dip” down a bit going off edges
The “Geometric” Engine

• World represented as an arbitrary mesh of triangles
• Entities represented as ellipsoids
• We need to build:
 – A basic mesh representation
 – Ellipsoid-triangle collisions
 – Ellipsoid raycasting
 – Triangle raycasting
 – Navigation through the world
QUESTIONS?
LECTURE 6
Raycasting II
(Common Engine)
ELLIPSOID RAYCASTING
Raycasting a circle

- Before we try 3D, let’s think in 2D
- Ray: position and direction
 - \(\vec{r}(t) = \vec{p} + t\vec{d} \)
 - \(\vec{d} \) is a normalized vector
- Make every circle a unit circle at the origin (simpler to raycast)
 - Translate circle center and ray origin by -\(\text{circle center} \)
 - Scale circle and ray origin and direction relative to radius \(1/r \)
 - DO NOT RE-NORMALIZE the ray direction vector
- Plug ray equation into equation for unit circle at the origin:
 \[
 x^2 + y^2 = (\vec{p}.x + \vec{d}.x \ast t)^2 + (\vec{p}.y + \vec{d}.y \ast t)^2 = 1
 \]
- \(t \) is the only real variable left, solve with quadratic formula
 - \(t \) gives you the intersection point for both the unit circle with the transformed ray, and the original circle with the untransformed ray
 - Because we haven’t re-normalized the direction
Raycasting a Sphere

• Unit sphere at the origin: \(x^2 + y^2 + z^2 = 1 \)
 – Same transformations to both sphere and ray

• Same ray equation (3 components)

• Solve for \(t \):
 – Calculate discriminant \((b^2 - 4ac) \)
 • \(< 0\) means no collision (no real roots to quadratic)
 • \(= 0\) means one collision (one root, ray is tangent to sphere)
 • \(> 0\) means two collisions (two roots)

• Plug \(t \) into ray equation to get 3D intersection
Raycasting an Ellipsoid
Change of space

• Sphere intersections are way easier than ellipsoid intersections
• Squish the entire world so the ellipsoid is a unit sphere!
 – Do detection in that space, convert back
• Change of vector spaces:
 – Ellipsoid radius $R = (rx, ry, rz)$
 – Use basis $(rx,0,0)$, $(0,ry,0)$, $(0,0,rz)$
 – Ellipsoid space to sphere space: component-wise division by R!
Raycasting an Ellipsoid

• Convert from ellipsoid space to unit sphere space
 – Don’t forget to transform to origin as well as scale
• Solve sphere equation for the new ray
• Plug t into the original ray equation to get intersection point
Raycasting II (Common Engine) – Ellipsoid Raycasting

QUESTIONS?
TRIANGLE RAYCASTING
Raycasting to the environment

• We can raycast to ellipsoids, great
• Need some way to be able to raycast to our environment as well
• This can be used for gameplay like bullets, lasers, line of sight, etc...
• More importantly, you will use this in your sphere-triangle collision detection
Raycasting to the environment

• Our environment is made up entirely of polygons
• All polygons can be decomposed into triangles
 – Even ellipsoids are approximated by triangles when being drawn
• So to raycast the environment, raycast to each triangle, and take the closest intersection
Ray-triangle intersection

- Given: Ray casted from \(\vec{p} \) in the direction of \(\vec{d} \)
 - Ray equation \(\vec{r}(t) = \vec{p} + t\vec{d} \)
- Goal: find \(\vec{x} \), the point on the triangle
- There might not be a point \(\vec{x} \) which exists in that triangle
- But there is a point \(\vec{x} \) that exists in the plane of that triangle
 - \(t \) value might just be negative (the point is in the opposite direction of the ray)
Ray-triangle intersection

- Point \hat{x} on triangle plane if
 \[\hat{n} \cdot (\hat{x} - \hat{s}) = 0 \]
 - Where \hat{s} is any point on the plane, such as one of the vertices
 - \hat{n} is the normal of the plane

- Set $\hat{x} = \hat{p} + t\hat{d}$

- Solve for t in
 \[\hat{n} \cdot ([\hat{p} + td] - \hat{s}) = 0 \]
 - That means
 \[t = \frac{\hat{n} \cdot (\hat{p} - \hat{s})}{\hat{n} \cdot \hat{d}} \]
Ray-triangle intersection

• So now we know the point P at which the ray intersects the plane of the triangle
 – But is that point inside the triangle or outside of it?
• Point P (on plane) is inside triangle ABC iff P is on the left of all of the edges (assuming that edges are defined in counter-clockwise order i.e. AB, BC, CA)
Ray-triangle intersection

• A point P is to the left of edge AB if the cross product $AB \times AP$ is in the same direction as the triangle normal $-BC \times BP$, and $CA \times CP$ are the other cross products.

• Can calculate normal of a triangle with cross product of two of its edges:

$$N = (B - A) \times (C - A)$$

• Now you can compare to see if two vectors are in the same direction by seeing if their dot product is positive:

$$(AB \times AP) \cdot N > 0$$
Triangle Raycasting

QUESTIONS?
LECTURE 6
Collisions III
(Geometric Engine)
Collisions III (Geometric Engine)

GEOMETRIC COLLISIONS
The basics

• Entity represented by an ellipsoid
• World represented by a set of triangles
• Continuous collision detection
 – Analytically compute the time of and point contact, translate object to that point
 – What we did for the voxel engine
• Basic idea: formulate motion of the entity as a parametric equation, solve for intersection
 – Only works for simple motion (straight lines)
General algorithm

• Compute the line the player follows in one update
 – Kinda like raycasting start position to end position
• Do ellipsoid-triangle sweep test for all triangles and take the closest result
 – Can optimize this using spatial acceleration data structure to test relevant triangles
 – Closest indicated by smallest t value (proportion of update taken resulting in collision)
• Compute remaining translation, sweep again
 – Cut off after a certain number of translations
 – You’ll do this next week
WARNING

• There is A LOT of vector math we’re about to get into
• You DO NOT need to understand all of it
 – Though it may help with debugging
• This is not a math class
 – Don’t memorize the derivations
 – Don’t re-invent the wheel
Collisions III (Geometric Engine)

ELLIPSOID-TRIANGLE COLLISIONS
Ellipsoid-triangle collisions

• Analytic equation for a moving sphere:
 – Unit sphere moving from A at $t = 0$ to B at $t = 1$
 – Location of center: $A + (B - A)t$
 – Point P on the sphere at t if $\|(A + (B - A)t) - P\|^2 = 1$

• Solve for t in unit sphere space
 – Value stays the same in ellipsoid space!

• Split collision detection into three cases:
 – Triangle interior (plane)
 – Triangle edge (line segment)
 – Triangle vertex (point)
Sphere-interior collision

• Intersect moving sphere with a plane
• If intersection is inside triangle, stop collision test
 – Interior collision always closer than edge or vertex
• If intersection is outside triangle, continue test on edge and vertices
 – NO short circuit
Sphere-interior collision

- **Sphere-plane intersection:**
 - Same thing as ray plane using the point on the sphere closest to the plane!
 - Given plane with normal N, closest point is $A - N$
 - We assume that the sphere starts “above” the triangle
 - Don’t care about colliding a sphere starting below the triangle, this should never happen
Sphere-interior collision

- **Point P on plane if**
 \[N \cdot (P - S) = 0 \]
 - Where S is any point on the plane, such as one of the vertices
- **Set**
 \[P = (A - N) + (B - A)t \]
- **Solve for t in**
 \[N \cdot [(A - N) + (B - A)t] - S = 0 \]
 - That means
 \[t = -\frac{N \cdot (A - N - S)}{N \cdot (B - A)} \]
- **This says when the sphere hits the plane**
 - May not be in the triangle!
 - Repeat your point-in-triangle test!
QUESTIONS?

Collisions III (Geometric Engine) – Ellipsoid-Interior
Sphere-edge collision

• Sphere vs. edge is the same as sphere vs. line segment
 – Intersect moving sphere with the infinite line containing the edge
 – Reject intersection if it occurs outside the line segment

• How do we collide a moving sphere with a line?
 – Really just finding when sphere center passes within 1 unit of line
 – If we treat the line as an infinite cylinder with radius 1, and the motion of sphere center as ray we can use ray-cylinder intersection
Analytic sphere-edge collision

- Area of parallelogram formed by two vectors is the length of their cross product
- Defining the surface of an infinite cylinder with vectors
 - Given two points C and D along cylinder axis
 - Point P on surface if $\| (P - C) \times (D - C) \|$

Green parallelogram area is equal to gray rectangle area if P is on cylinder surface.
Analytic sphere-edge collision

- Set \(P = A + (B - A)t \)
- Substitute into previous equation:
 \[
 \|([A + (B - A)t] - C) \times (D - C)\|^2 = \|D - C\|^2
 \]
- Solving for \(t \), you get a quadratic \((at^2 + bt + c = 0)\) where
 \[
 a = \|(B - A) \times (D - C)\|^2
 \]
 \[
 b = 2((B - A) \times (D - C)) \cdot ((A - C) \times (D - C))
 \]
 \[
 c = \|(A - C) \times (D - C)\|^2 - \|D - C\|^2
 \]
- Solve using quadratic equation, use lesser \(t \) value
Analytic sphere-edge collision

- Discard intersection if not between C and D
 - Will be handled by vertex collision test
- To check if intersection is between C and D:
 - Get vector from C to intersection point P
 \[P - C \]
 - Project this vector onto cylinder axis
 \[(P - C) \cdot \frac{D - C}{\|D - C\|} \]
 - Check if projection is in the range \((0, \|D - C\|)\)
 \[0 < (P - C) \cdot \frac{D - C}{\|D - C\|} < \|D - C\| \]
 - Optimized by multiplying by \(\|D - C\|\):
 \[0 < (P - C) \cdot (D - C) < \|D - C\|^2 \]
QUESTIONS?

Collisions III (Geometric Engine) – Ellipsoid-Edge
Analytic sphere-vertex collision

• Collision test against a triangle vertex V
• How do we collide a moving sphere against a point?
 – We know how to do a ray-sphere intersection test
 – Moving sphere vs. point is equivalent to sphere vs. moving point
 • Where the point moving in opposite direction
Analytic sphere-vertex collision

• Point P on sphere if \(|P - A|^2 = 1\)
 - Set \(P = V - (B - A)t\)
 - Solve \(|[V - (B - A)t] - A|^2 = 1\) for \(t\)

• Looks like \(at^2 + bt + c = 0\) where
 \(a = |B - A|^2\)
 \(b = -2(B - A) \cdot (V - A)\)
 \(c = |V - A|^2 - 1\)
QUESTIONS?

Collisions III (Geometric Engine) – Ellipsoid-Vertex
LECTURE 6
Tips for Platformer 1
Tips for Platformer1

COLLISION DEBUGGER
“No, I don’t need a debugger”

• Physics/collision bugs are the hardest type of bugs to track down
• It will be much easier for you to find your mistakes in a controlled environment than for you to make them in your own code
• It’s easier to test to make sure you’ve done it correctly
How does it work?

- You can move around two of the ellipsoids here
 - The green ellipsoid is the entity at the beginning of the tick
 - The red ellipsoid is the entity at the end of the tick
- The other two ellipsoids are determined by the placement of the first two
 - The first orange ellipsoid is where the entity will end up via colliding with the green triangles
 - The second orange ellipsoid is where the entity slides to after hitting the surface
Collisions Data

• Your collision code should return a struct, minimally containing:
 – t-value in [0,1]
 – Normal
 – Point of contact

• You may want to put “fancier” stuff in later

• About 2-sided triangles
LECTURE 6

C++ Tip of the Week
C++ Tip of the Week

PARAMETRIZED INHERITANCE
Parametrized inheritance

// (Parent varies at compile time)
template<class Parent> class Kid :
public Parent
{
public:
 Kid () : Parent() { ... };
 method() { Parent::doThis(true);
 doThat();
 Parent::doThis(false); }
 doThat() { ... };

 // call Dad::doThis, Kid::doThat,
 Dad::doThis
 Kid<Dad> f1; f1.method();

 // call Mom::doThis, Kid::doThat,
 Mom::doThis
 Kid<Mom> f2; f2.method();

 Kid<Parent> f3; f3.doThat();
 // the compiler just wrote 3 “Kid”
 classes for us

• Haven’t really talked
 about template classes
• Kinda like generics in Java
• But the thing in the
 parantheses is just text
 replaced by the compiler
 when given actual
 argument
• Can be used for things like
 double dispatch.
 • Don’t need to cast
 things for collision
 callbacks
LECTURE 5
C++ Anti-Tip of the Week
C++ Anti-Tip of the Week

OPERATOR OVERLOADING
Wait, Operator Overloading?

• In C++, you can tell basic operators to work with classes (or enums!)
 – The basic arithmetic operations are commonly overloaded (+, -, *, /)
 • ++, --, <<, and >> are also often overloaded

• GLM overloads many operators to make vector math convenient
Operator Overloading

• There are many legitimate uses of operator overloading
• But it can be very easy to misuse it
• In general, only use it to objectively make code clearer (to anyone who reads it)
 — even if `myColor%(BLUE->RED[-7])` makes sense to you
Operator Overloading

• You can even overload the function operator () for classes
 – Then you can call objects of that class like functions
 – But you could just give that class a *named* function, and call that function from your objects

• You can overload the assignment operator = for classes too
Operator Overloading

• The only operators you can’t overload are:
 :: . (dot) ?: (ternary) sizeof

• Meaning you can overload pretty much everything else:
 % ^ | & ~ > < == ! [] () new -> delete

• [Link](https://isocpp.org/wiki/faq/operator-overloading)
PLAYTESTING!

Sign up for Platformer1 Design Checks!