
CS195f Homework 2

Mark Johnson and Erik Sudderth

Homework due at 2pm, 1st October 2009

The first question asks you to analyse the following naive Bayes model that describes the
weather in a mythical country.

Y = {night, day}

X1 = {cold, hot}

X2 = {rain, dry}

P(X1, X2, Y ) = P(Y )P(X1 | Y )P(X2 | Y )

P(Y =day) = 0.5

P(X1=hot | Y =day) = 0.9

P(X1=hot | Y =night) = 0.2

P(X2=dry | Y =day) = 0.75

P(X2=dry | Y =night) = 0.4

Question 1:

For each of the following formulae except the first, write an equation which defines it in
terms of formulae that appear earlier in the list. (For example, you should give a formula
for P(x1, x2) in terms of P(x1, x2, y)). Then given the model above, calculate and write out
the value of the formula for possible each combination of values of the variables that appear
in it.

a) P(x1, x2, y).

b) P(x1, x2).

c) P(y | x1, x2).

d) P(x1).

e) P(x2).

f) P(x1 | x2).

g) P(x2 | x1).
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h) P(x1 | x2, y).

i) P(x2 | x1, y).

Are X1 and X2 conditionally independent given Y ? Are X1 and X2 marginally independent,
integrating over Y ? Provide a short proof for both answers.

Consider a binary categorization problem, and let p(yi | xi) denote the posterior distri-
bution of the latent class label yi ∈ {0, 1} given observation xi. Suppose that the classifier
ŷ(xi) is allowed to make one of three decisions: choose class 0, choose class 1, or “reject”
this data (refuse to make a decision). We can use a Bayesian decision theoretic approach to
tradeoff the losses incurred by incorrect decisions and rejections.

Question 2:

Suppose that the classifier incurs a loss of 0 whenever it chooses the correct class, a loss of
1 whenever it chooses the wrong class, and a loss of λ whenever it selects the reject option.
Express the optimal decision rule ŷ(xi), which minimizes the posterior expected loss, as a
function of p(yi | xi) and λ. Simplify your answer as much as possible.

The next question asks you to devise ML and Bayesian MAP estimators for a simple
model of an uncalibrated sensor. Let the sensor output, X, be a random variable that ranges
over the real numbers. We assume that, when tested over a range of environments, its
outputs are uniformly distributed on some unknown interval [θa, θb], so that

p(x | θa, θb) =

{

1/(θb − θa) if θa ≤ x ≤ θb

0 otherwise

=
1

θb − θa

Iθa,θb
(x)

Here, Iθa,θb
(x) denotes an indicator function which equals 1 when θa ≤ x ≤ θb, and 0

otherwise. We denote this distribution by X ∼ Unif(θa, θb). To characterize the sensor’s
sensitivity, we would like to infer θa and θb.

Question 3:

Suppose that we are certain that θa = 0, so that the only unknown parameter is θb , θ.

a) Given N i.i.d. observations D = (x1, . . . , xN), Xi ∼ Unif(0, θ), what is the likelihood
function p(x | θ)? What is the maximum likelihood (ML) estimator for θ? Give an
informal proof that your estimator is in fact the ML estimator.

b) Suppose that we place the following prior distribution on θ:

p(θ) = αβαθ−α−1
Iβ,∞(θ)
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This is known as a Pareto distribution. We denote it by θ ∼ Pareto(α, β). Plot the three
prior probability densities corresponding to the following three hyperparameter choices:
(α, β) = (0.1, 0.1); (α, β) = (2.0, 0.1); (α, β) = (1.0, 1.0).

c) If θ ∼ Pareto(α, β) and we observe N uniformly distributed observations Xi ∼ Unif(0, θ),
derive the posterior distribution p(θ | x). Is this a member of any standard family?

d) For the posterior derived in part (c), what is the corresponding MAP estimator of θ? How
does this compare to the ML estimator?

e) Recall that the quadratic loss is defined as L(θ, θ̂) = (θ − θ̂)2. For the posterior derived
in part (c), what estimator of θ minimizes the posterior expected quadratic loss? Simplify
your answer as much as possible.

f) Suppose that we observe three observations x = (0.7, 1.3, 1.9). Determine the posterior
distribution of θ for each of the priors in part (b), and plot the corresponding posterior
densities. What is the MAP estimator for each hyperparameter choice? What estimator
minimizes the quadratic loss for each hyperparameter choice?

Question 4: (200-level credit)

a) Consider a continuous parameter θ ∈ Θ, where Θ ⊂ R is convex. Let p(θ) denote the
prior distribution, and suppose that an observation x is observed with likelihood model
p(x | θ). Derive the general form of the estimator θ̂(x) which minimizes the posterior
expected loss, where L(θ, θ̂) = |θ − θ̂|.

b) Let θ be the probability that a possibly biased coin comes up heads. Let θ ∼ Beta(0.5, 0.5)
be our prior distribution (this reference prior could be motivated by objective Bayesian
arguments). Suppose that out of 5 i.i.d. observations xi ∼ Bernoulli(θ), 3 come up heads,
and 2 tails. What is the posterior distribution p(θ | x), where x = (x1, . . . x5)? Plot both
the prior p(θ) and posterior p(θ | x).

c) Propose and implement a numerical method for approximating the estimator θ̂(x) which
minimizes the posterior expected loss L(θ, θ̂) = |θ − θ̂|, for the data in part (b). Compare
your answer to the corresponding ML estimate.

d) Repeat parts (b-c) for the case where all five observations come up heads.

e) Generalize your answer in part (a) to the case where θ ∈ R
d, and L(θ, θ̂) =

∑d

i=1
|θi− θ̂i|.

In this next question, we explore the geometry of the receiver operating characteristic
(ROC) curves discussed in lecture. Let Y = {0, 1} denote the two possible classes in a
binary categorization problem. For N observations xi of instances with true class labels yi,
and any decision rule ŷ(xi), recall the following definitions:

TP Total number of true positives, which occur when yi = 1, and ŷ(xi) = 1.

FP Total number of false positives, which occur when yi = 0, but ŷ(xi) = 1.
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TN Total number of true negatives, which occur when yi = 0, and ŷ(xi) = 0.

FN Total number of false negatives, which occur when yi = 1, but ŷ(xi) = 0.

The ROC curve is then a plot of the expected values of sensitivity, or TP/(TP +FN), versus
specificity, or TN/(TN + FP ), achieved by some family of decision rules for this dataset.

Our analysis is based on the concept of a randomized decision rule. Given two base
decision rules ŷ0(xi), ŷ1(xi), we classify each observation xi as follows:

• Sample zi ∼ Bernoulli(γ), for some fixed γ = P[zi = 1].

• Select decision ŷ1(xi) if zi = 1, or decision ŷ0(xi) if zi = 0.

Varying γ between 0 and 1 then creates a new family of decision rules.

Question 5: (200-level credit)

a) Consider a randomized decision rule as above. Derive formulas for the sensitivity and
specificity of this decision rule as a function of γ, and the sensitivity and specificity of the
base decision rules.

b) Consider the diagonal ROC line for which sensitivity = 1-specificity. Prove that a classi-
fier which achieves any performance on this line can always be constructed, regardless of
the joint distribution P (xi, yi).

c) A set Λ is convex if, for any α ∈ [0, 1] and λ0, λ1 ∈ Λ, (αλ0 + (1 − α)λ1) ∈ Λ. Consider
a hypothetical family of decision rules for which the region under the ROC curve is not
convex. Argue that these rules must be sub-optimal, i.e. that there exists a decision rule
with equal specificity but higher sensitivity.

d) Suppose you test a learned classifier on a validation set, and discover that the region under
the ROC is not convex. How could you construct a better classifier?
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