Outline

1. Ch. 5 Clustering Theory and Spectral Clustering

2. k-means Clustering Algorithms
 - A Generic k-Means Clustering Algorithm
 - k-Means Clustering Theory
 - Time Complexity: k-Means is a linear time algorithm
 - Design Options: Initialization and “best” k for k-Means
Ch. 5 Clustering Theory and Spectral Clustering: The k-Mean Clustering Algorithm
Overview for Ch. 5

- Clustering spaces and distance measures
- The “curse of dimensionality”
- Classification of clustering algorithms
- Hierarchical Clustering Algorithms
- k-means Clustering Algorithms
- EM Clustering Algorithms
- Euclidean vs Non-Euclidean Spaces for Clustering
- An Introduction to Spectral Graph Theory: eigenvalues and eigenvectors in graph theory
- Dimensionality Reduction: Principal Component Analysis
- Spectral Clustering Algorithms
Classification of Clustering Algorithms

- Machine Learning: **Classification** is in Supervized Learning
- Machine Learning: **Clustering** is in Unsupervised Learning, maybe the most important

- Clustering Algorithms: Type 1 **Hierarchical Clustering** aka “tree construction” or “flat” clustering; **hard** clustering
- Clustering Algorithms: Type 2 **k-Means Clustering** aka “point assignment” clustering; **hard** clustering
- Clustering Algorithms: Type 3 **Model-based EM Clustering**; **soft** clustering
In the class of **point assignment clustering** algorithms, the best known family of algorithm is the **k-means Clustering** algorithms family.

Two assumptions are in place:
- The Clustering Space is Euclidean, and
- The number of clusters k is known in advance, i.e., part of the input.
A generic k-means clustering algorithm

GENERIC k-MEANS CLUSTERING ALGORITHM

INPUT: N points of a space S, and k the number of clusters

While termination criterion is not met

BEGIN Choose k points in different clusters;

Make these points centroids of their clusters;

FOR each remaining points p in the input DO

Find the centroid to which p is closest;

Add p to the cluster of that centroid;

Adjust the centroid of that cluster to account for p;

END

OUTPUT: the k clusters C_1, \ldots, C_k
The algorithm initializes the k clusters by placing one input point in each cluster.

Then it places each of the remaining points into the clusters one at a time.

For each point, it places it in the cluster whose centroid is closest to the point.

A centroid of a cluster can move around, as points are assigned to that cluster, but not too much.

One further step could be that at the end of the algorithm to fix the centroids and start again the algorithm assigning all to points to the centroids for robustness.
We would like to show that the k-means algorithm iterations converge, by proving that RSS monotonically decreases (in fact decreases or no change) in each iteration.
- The \(k \)-means is the most important “flat clustering” (flat meaning non hierarchical) algorithm
- its optimization objective is to minimize the average Euclidean \(L_2 \) distance between the points and their centroids
- The \textbf{centroid} for cluster \(C \) is defined by

\[
\mu(C) = \frac{1}{|C|} \sum_{x \in C} x
\]
The residual sum of squares or \(\text{RSS} \) is the square distance of each vector from its centroid summed over all points

\[
RSS_r = \sum_{x \in C_r} (x - \mu(C_r))^2
\]

\[
RSS = \sum_{r=1}^{k} RSS_r
\]

\(\text{RSS} \) is objective function of the \(k \)-means clustering minimization

Since the number the points \(N \) is fixed, \(\text{RSS} \) is equivalent to minimizing the average square distance, a measure of how well the centroids represent their points in their clusters
First, RSS decreases in the reassignment step: each point p is assigned to its closest centroid, so the distance it contributes to RSS decreases.

Second, it decreases in the recomputation step because the new centroid is the minimum of the RSS_r where point p was reassigned to cluster C_r.
A Generic k-Means Clustering Algorithm

k-Means Clustering Theory

Time Complexity: k-Means is a linear time algorithm

Design Options: Initialization and “best” k for k-Means

\[RSS_r = \sum_{x \in C_r} (x - \mu_r)^2 \]

For finding the minimum we set the derivative to 0:

\[\frac{\partial RSS_r(\mu)}{\partial \mu_r} = \sum_{x \in C_r} 2(x - \mu_r) = 0 \]

\[\sum_{x \in C_r} 2(x - \mu_r) = 0 \]

implies

\[\mu_r = \frac{1}{|C_r|} \sum_{x \in C_r} \]

which is exactly of centroid formula!
In conclusion, we minimize RSS_r, when the old centroid is replaced with the new centroid. RSS, the sum of the RSS_r, must also decrease during recomputation.

Because there are only a finite number of possible clusterings, a monotonically decreasing algorithm will eventually arrive at a local minimum. A note about breaking the ties when ties exist: one can pick among the ties the smallest index of the point in the input order (or other order on the N input points); otherwise, if not careful, the algorithm might cycle forever.

There is, of course, no guarantee for the global minimum, just reaching a local minimum.
Time complexity of the k-means clustering algorithm $= O(N)$ a linear time algorithm

- Most time is computing distances between a point and a centroid, such a computation takes $O(1)$
- The reassignement of a point to one of the k centroids takes constant time as k is a constant
- Overall we caompute kN pairwise distances
- If we perform I iterations (one iteration is reassignement of all the points) then the overall time is $O(IkN)$ which is $O(N)$ as I and k are constants
Initializing Clusters for k-Means

- We want to pick initially k “seeds” points that will be in different clusters. Two approaches are used:
 1. We pick points that are as far away from one another as possible. We can cluster the sample data hierarchically into k clusters. Pick from each clusters a point closer to the cluster centroid.
 2. We can also use another approach for the selection set of the first k points to initialize the k clusters: at $t = 1$ pick the first point at random from the input set; then we add one point to the selection set at time t: for each point not in the selection set yet, compute all the distances to the points in the selection set; then pick at time t the point with the maximum of the minimum distances to the points in the selection set of the $t - 1$ points. Stop after the $t = k$ step.
Outliers

- Outliers present problems for the k-Means clustering
- If an outlier is picked as a seed, the algorithm may end up with a cluster with only one element in that cluster, the outlier element, a singleton cluster; avoiding outliers from the seed selection phase is important
Picking the value of k for the k-means clustering

- We can use a measure for quality of clustering based on such measures of “diffuseness” as average diameter size or average radius size, and use the value of k for which e.g., the average diameter size increases moderately from step to step; if we use a “wrong” k, e.g., fewer clusters that they really are, such monotone increases of the average diameter will go up abruptly at some value of k; it seems that the best such k is the last for the curve is “not bending” up
If we have no correct value of what k is, we can find a good value in a number of clustering operations that grows only logarithmically with the true number.

we can run the k-means algorithm for $k = 1, 2, 4, 8, \ldots$ and eventually we will find that somewhere between two values b and $2b$ there is very small difference of the measure of “cohesion” of “diffuseness” that we use; we could conclude that the value of k that is witnessed by the data is between $\frac{b}{2}$ and b.

If we use a binary search in that range we can find the best value of k in another $\log_2 b$ clustering operations, for a total of $2 \log_2 b$ clusterings; since that “true value” of k is at least $\frac{b}{2}$, we have used a number of clusterings that is logarithmic in k.