9.1 Non-Deterministic Finite Automata

In this section we will introduce the concept of an non-deterministic finite automaton (NDFA / NFA). An NDFA is the non-deterministic equivalent of a DFA. It is defined in much the same way as a DFA.

Def: A non-deterministic finite automata is an $M = (S, A, δ, s_o, F)$ where...

1. S is a finite set of **states** of control
2. A is the alphabet from which input symbols are chosen
3. $δ$ is the **state transition function**

 $δ : S × (A ∪ \{\epsilon\}) → 2^S$, where 2^S denotes the set of all subsets of S
4. s_o is the **initial state** of the finite control
5. $F ⊆ S$ is the set of **final** or **accepting** states

Note that the definition above only differs from the DFA definition with regards to the transition state function. In an NDFA, a state can accept a symbol from the alphabet and transition to any subset of the other states in the automaton. In other words, the NDFA can non-deterministically transition to one or more defined states on the same input symbol. Let’s look at an example of an NDFA.

9.2 Example of an NDFA

Consider an NDFA M that accepts all strings that end in aba. That is, $L(M) = (a + b)^*aba$. We construct M as:

$M = (\{s_1, s_2, s_3, s_4\}, \{a, b\}, δ, s_1, \{s_4\})$ where $δ$ is given by:

<table>
<thead>
<tr>
<th>State</th>
<th>Input →</th>
<th>a</th>
<th>b</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₁</td>
<td></td>
<td>{s₁,s₂}</td>
<td>{s₁}</td>
<td>∅</td>
</tr>
<tr>
<td>s₂</td>
<td></td>
<td>∅</td>
<td>{s₃}</td>
<td>∅</td>
</tr>
<tr>
<td>s₃</td>
<td></td>
<td>{s₄}</td>
<td>∅</td>
<td>{s₁}</td>
</tr>
<tr>
<td>s₄</td>
<td></td>
<td>∅</td>
<td>∅</td>
<td>{s₂}</td>
</tr>
</tbody>
</table>

Below is a drawing of M:

![Diagram of M]

9.3 Transition Diagrams

Let $M = (S, A, \delta, s_0, F)$ be an NDFA. The **transition diagram** associated with M is a directed graph $G = (S, E)$ with labelled edges. Think of this as the formal name of the drawing of M above. The set of edges E and their labels are defined as follows:

- If $\delta(s, a)$ contains s' for some $a \in A \cup \{\epsilon\}$ then the edge (s, s') is in E.
- The label of (s, s') is the set of $b \in A \cup \{\epsilon\}$ such that $\delta(s, b)$ contains s'.

9.4 Theorems Relating DFAs, NDFAs, and Regular Languages

Theorem 9.1 Each language accepted by a non-deterministic finite automaton is a regular language.

Theorem 9.2 For every regular expression α there is a non-deterministic finite automata accepting the language denoted by the expression.

Theorem 9.3 If L is a regular language then L is accepted by a deterministic finite automaton.

Corollary to 15.2: The set of all languages described by regular expressions is equivalent to the set of all languages described by NDFAs.

Corollary to 15.3: The set of all languages described by NDFAs is equivalent to the set of all languages described by DFAs.

9.5 The Failure Function

Continuing from last class, suppose after having read $t_1t_2...t_k$ (the first k characters of the text t) we find that M_p (the pattern matching machine we are trying to construct) is in State J. This implies that the last j symbols of $t_1t_2...t_k$ are $p_1p_2...p_j$ and the last m symbols of $t_1t_2...t_k$ are not a prefix of $p = p_1...p_l$ for $m > j$. But what about the case where $t_{k+1} \neq p_{j+1}$? That is, when the next symbol of the text is not the next symbol in the pattern. In this case M_p enters the highest number state i such that $p_1p_2...p_i$ is a suffix
of \(t_1t_2...t_{k+1} \). To help determine \(i \), the machine \(M_p \) has associated with it an integer valued function \(f \). This function \(f \) is called the failure function for the pattern \(p \). We define \(f \) such that \(f(j) \) is the largest integer \(s \) less than \(j \) for which \(p_1...p_s \) is a suffix of \(p_1p_2...p_j \). That is, \(f(j) \) is the largest \(s < j \) such that \(p_1p_2...p_s = p_{j-s+1}p_{j-s+2}...p_j \). In words, \(s \) is the number of positions we can “fall back” to keep looking for the pattern \(p \), based on the fact that the suffixes of some prefixes of \(p \) are prefixes of \(p \) itself. If there is no such \(s \geq 1 \), then \(f(j) = 0 \). The next lecture will cover how to compute the failure function and use it to run the wondrous Knuth-Morris-Pratt algorithm.

Here is an example of the failure function for the pattern \(p = \text{aabbaab} \). The function, \(f \) maps an integer index \(i \) to another integer such that \(0 \leq f(i) < i \). The inputs and outputs of \(f \) are represented in the table below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_i)</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(f(i))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

For example, \(f(7) = 3 \) since \(\text{aab} \) is the longest proper prefix of \(\text{aabbaab} \) that is also a suffix of \(\text{aabbaab} \).

9.6 Failure Function Algorithm

We will now present an algorithm to compute the failure function for a pattern \(p \). To see how the failure function is used by \(M_p \), let us define the function \(f^m(j) \) as follows:

i) \(f^1(j) = f(j) \), and

ii) \(f^m(j) = f(f^{m-1}(j)) \), for \(m > 1 \)

That is, \(f^m(j) \) is just \(f \) applied \(m \) times to \(j \). In our example above, \(f^2(6) = 1 \).

Supposed once again that \(M_p \) is in state \(j \), having read \(t_1t_2...t_k \) and \(t_{k+1} \neq p_{j+1} \). At this point \(M_p \) applies the failure function repeatedly to \(j \) until it finds the smallest value of \(m \) for which either:

Case 1: \(f^m(j) = u \) and \(t_{k+1} = p_{k+1} \), or

Case 2: \(f^m(j) = 0 \) and \(t_{k+1} \neq p_1 \)

That is, \(M_p \) backs up through states \(f^1(j) \), \(f^2(j) \),..., and so on until either Case 1 or Case 2 holds for \(f^m(j) \) but not for \(f^{m-1}(j) \). In Case 1 \(M_p \) enters State \(u+1 \) and in Case 2 \(M_p \) enters State 0. In either case, the input pointer is advanced to position \(t_{k+2} \). In Case 1 it is easy to verify that if \(p_1p_2...p_j \) was the longest prefix of \(p \) that is a suffix of \(t_1t_2...t_k \) then \(p_1p_2...p_{f^m(j)+1} \) is the longest prefix of \(p \) that is a suffix of \(t_1t_2...t_k \).

In Case 2, no prefix of \(p \) is a suffix of \(t_1t_2...t_k \).

\(M_p \) then proceeds processing input symbol \(t_{k+2} \). \(M_p \) continues operating in this fashion either until it enters the final state \(l \) in which case we know that the last input symbols constitute an instance of the patterns \(p = p_1p_2...p_l \), or until \(M_p \) has processed the last input symbol of \(t \) without entering State \(l \), in which case we know that pattern \(p \) is not found in the input text \(t \).
9.7 An Example of the Failure Function

Now we’ll present an example of the failure function, as represented by a pattern matching machine M_p. Let $p = \text{aabbaab}$ and $t = \text{abaabaabbaab}$. M_p is as follows, where the dashed arrows represent the failure function:

For example, initially M_p is in State 0. On reading the first symbol of t, M_p enters state 1. Since there is no transition from state 1 on the second input symbol of t (ie. b), M_p enters state 0. That is, M_p goes back to the state given by the output of the failure function from State 1. Now since the first symbol of p is not t_2, Case 2 from above prevails and M_p remains in state 0. From here M_p continues consuming characters in the input string and following the corresponding arrows. If the machine ever reaches State 7, the pattern p has been found in the text t. The next set of notes will go into how we can calculate the failure function and apply it the task of finding any pattern p in any body of text.