21.1 Two HMM problems

In this chapter, we focus on two types of problems that HMMs can solve.

1. **The evaluation problem**
 - **Given:** σ, λ.
 - **Compute:** $p(\sigma|\lambda)$, the probability of observing the sequence σ in the model λ.

2. **The decoding problem**
 - **Given:** σ, λ.
 - **Compute:** The sequence of hidden states $Q = q_1q_2\ldots q_T$ that optimally “explains” the sequence of observations.

21.1.1 Solving the evaluation problem

We solve the evaluation problem via the forward algorithm, which makes use of the forward variable

$$\alpha_t(i) = p(\sigma_1\sigma_2\ldots\sigma_t, q_t = s_i).$$

The forward algorithm for finding $\alpha_t(i)$ and $p(\sigma|\lambda)$ is as follows.

1. **Initialization**

 $\alpha_1(i) = \pi_ib_i(\sigma_1)$

 for $1 \leq i \leq N$. This expression gives the joint probability of the first observed symbol and some state i, $p(\sigma_1, s_i)$.

2. **Recurrence**

 $$\alpha_{t+1}(j) = \sum_{i=1}^{N} \alpha_t(i)a_{ij}b_j(\sigma_{t+1})$$

 for $1 \leq i, j \leq N$ and $1 \leq t \leq T - 1$. The sum in the above expression accounts for the fact that we can reach state s_j at time $t + 1$ by coming from any state s_1, s_2, \ldots, s_N at time t. Observe that $\alpha_t(i)$ is the probability of the joint event of observing the sequence $\sigma_1\sigma_2\ldots\sigma_t$ and ending up at state s_i at time t. Thus, $\alpha_t(i)a_{ij}$ is the probability of the joint event of observing $\sigma_1\sigma_2\ldots\sigma_t$ and going from state s_i at time t to state s_j at time $t + 1$. If we let i range over the N states and sum up, we obtain the joint probability of observing $\sigma_1\sigma_2\ldots\sigma_t$ and ending up at state s_j at time $t + 1$.
3. Termination

\[p(\sigma|\lambda) = \sum_{i=1}^{N} \alpha_T(i). \]

21.1.2 Solving the decoding problem

To solve the decoding problem, we need to define what we mean by finding the “best” sequence of hidden states \(Q \). We will proceed by maximizing the probability of the hidden state sequence \(Q \) given the observed sequence \(\sigma \), \(p(Q|\sigma) \), over all possible choices of \(Q \). The famous Viterbi algorithm carries out this maximization. Define \(\delta_t(i) \) by

\[\delta_t(i) = \max_{q_1 \ldots q_{t-1}} p(q_1 \ldots q_{t-1}, q_t = s_i \mid \sigma_1 \ldots \sigma_t). \]

In words, \(\delta_t(i) \) is the best score (i.e. highest probability) along the path defined by \(q_1 q_2 \ldots q_{t-1} q_t \) that accounts for the first \(t \) observation symbols and ends up at the state \(s_i \). The key recurrence is

\[\delta_{t+1}(j) = \max_i \delta_t(i) a_{ij} b_j(\sigma_{t+1}). \]

Here is the algorithm.

1. **Initialization**

\[\delta_1(i) = \pi_i b_i(\sigma_1), \]
\[\psi_1(i) = 0, \]

for \(1 \leq i \leq N \).

2. **Recurrence**

\[\delta_t(j) = \max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} b_j(\sigma_t), \]
\[\psi_t(j) = \text{argmax}_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij}, \]

for \(2 \leq t \leq T \) and \(1 \leq j \leq N \).

3. **Termination**

\[p^* = \max_{1 \leq i \leq N} \delta_T(i), \]
\[q_T^* = \text{argmax}_{1 \leq i \leq N} \delta_T(i). \]

4. **Back tracking**

We recover the optimal hidden state path by the following recurrence for \(q_t^* \).

\[q_t^* = \psi_{t+1}(q_{t+1}^*), \]

for \(t = T - 1, T - 2, \ldots, 1 \).