20.1 HMM notation recap

- State space \(S = \{s_1, \ldots, s_N\} \).
- Set of possible observations \(V = \{v_1, \ldots, v_M\} \).
- State transition probabilities \(A = [a_{ij}] \), where \(a_{ij} = P(q_{t+1} = s_j \mid q_t = s_i) \).
- Observation probabilities \(B = [b_j(k)] \), where \(b_j(k) = P(v_k \text{ at } t \mid q_t = s_j) \).
- Initial state distribution \(\pi = (\pi_1, \ldots, \pi_N) \), where \(\pi_i = P(q_1 = s_i) \).

20.2 HMMs as generative models

Once we have specified a hidden Markov model, we can use it to generate a sequence of observations \(\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_T) \), where \(\sigma_t \) is the observation at time \(t \). We do so via the following procedure.

1. Choose an initial state \(q_1 \) according to the probability distribution given by \(\pi = (\pi_1, \ldots, \pi_N) \).
2. Set \(t = 1 \).
3. Choose the observation symbol \(\sigma_t \) according to the distribution of observations given the current state. In other words, if the current state is \(q_t = s_i \), choose \(\sigma_t \) according to the distribution \(b_i = [b_i(1), \ldots, b_i(M)] \).
4. Transition to a new state \(q_{t+1} \) according to the transition probability matrix \(A \). If the current state is \(q_t = s_i \), choose the next state according to the distribution \(a_i = [a_{i1}, \ldots, a_{iN}] \).
5. Increment \(t \) by one. If \(t < T \), return to step 3; stop otherwise.

20.3 The evaluation/model scoring problem

Given: A hidden Markov model \(\lambda = (A, B, \pi) \) and an observation sequence \(\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_T) \).

Compute: The probability of observing the sequence \(\sigma \) given the model, \(p(\sigma \mid \lambda) \).

We need to calculate \(p(\sigma \mid \lambda) \). Consider a sequence of hidden states \(Q = (q_1, q_2, \ldots, q_T) \). Since each \(q_t \)
can be any one of the \(N \) states in \(S \) and there are \(T \) such \(q \)'s, the number of possible hidden state sequences is \(N^T \). So it will not be feasible to compute a probability for every possible sequence of hidden states.

Suppose we did have a sequence of hidden states \(Q \). The probability of the observed sequence \(\sigma \) given this state sequence \(Q \) is given by the entries in the matrix \(B \):

\[
p(\sigma|Q) = \prod_{t=1}^{T} p(\sigma_t|q_t)
= b_{q_1}(\sigma_1) \cdot b_{q_2}(\sigma_2) \cdot \ldots \cdot b_{q_T}(\sigma_T).
\]

The probability of the sequence of states \(Q \) is given by the transition probabilities in the matrix \(A \) and the initial state distribution \(\pi \):

\[
p(Q) = \pi_{q_1} \cdot a_{q_1,q_2} \cdot a_{q_2,q_3} \cdot \ldots \cdot a_{q_{T-1},q_T}.
\]

Combining these results, we obtain the joint probability of the observation sequence and the state sequence

\[
p(\sigma, Q) = p(\sigma|Q)p(Q).
\]

From this joint distribution, we can compute the marginal distribution of \(\sigma \) by summing over all possible state sequences \(Q \):

\[
p(\sigma) = \sum_{Q} p(\sigma|Q)p(Q)
= \sum_{Q} \pi_{q_1} \cdot b_{q_1}(\sigma_1) \cdot b_{q_2}(\sigma_2) \cdot \ldots \cdot b_{q_T}(\sigma_T) \cdot a_{q_1,q_2} \cdot a_{q_2,q_3} \cdot \ldots \cdot a_{q_{T-1},q_T}
= \sum_{Q} \pi_{q_1} \left(\prod_{t=1}^{T} b_{q_t}(\sigma_t) \right) \left(\prod_{t=1}^{T-1} a_{q_t,q_{t+1}} \right).
\]

If we were to create an algorithm to compute this marginal distribution, it would run in \(O(N^T) \) time, as discussed above. We need a better approach. The forward algorithm allows us to efficiently compute \(p(\sigma) \).

20.4 The forward algorithm

Define the forward variable

\[
\alpha_t(i) = P[\sigma = (\sigma_1, \ldots, \sigma_t), q_t = s_i].
\]

In words, this is the probability of seeing the observed partial sequence \((\sigma_1, \ldots, \sigma_t) \) and ending up in state \(s_i \) at time \(t \).

20.4.1 The algorithm

The algorithm finds \(\alpha_t(i) \) and \(p(\sigma|\lambda) \).

1. **Initialization**

\[
\alpha_1(i) = \pi_i b_i(\sigma_1)
\]

for \(1 \leq i \leq N \).
2. **Recurrence**

\[\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij} \right] b_j(\sigma_{t+1}) \]

for \(1 \leq i, j \leq N \) and \(1 \leq t \leq T - 1 \).

3. **Termination**

\[p(\sigma|\lambda) = \sum_{i=1}^{N} \alpha_T(i). \]