11.1 The Failure Function

Continuing from last class, suppose after having read \(t_1 t_2 \ldots t_k \) (the first \(k \) characters of the text \(t \)) we find that \(M_p \) (the pattern matching machine we are trying to construct) is in State J. This implies that the last \(j \) symbols of \(t_1 t_2 \ldots t_k \) are \(p_1 p_2 \ldots p_j \) and the last \(m \) symbols of \(t_1 t_2 \ldots t_k \) are not a prefix of \(p = p_1 \ldots p_l \) for \(m > j \). But what about the case where \(t_{k+1} \neq p_{j+1} \)? That is, when the next symbol of the text is not the next symbol in the pattern. In this case \(M_p \) enters the highest number state \(i \) such that \(p_1 p_2 \ldots p_i \) is a suffix of \(t_1 t_2 \ldots t_{k+1} \). To help determine \(i \), the machine \(M_p \) has associated with it an integer valued function \(f \). This function \(f \) is called the \textbf{failure function} for the pattern \(p \). We define \(f \) such that \(f(j) \) is the largest integer \(s \) less than \(j \) for which \(p_1 \ldots p_s \) is a suffix of \(p_1 p_2 \ldots p_j \). That is, \(f(j) \) is the largest \(s < j \) such that \(p_1 p_2 \ldots p_s = p_{j-s+1} p_{j-s+1} \ldots p_j \). In words, \(s \) is the number of positions we can “fall back” to keep looking for the pattern \(p \), based on the fact that the suffixes of some prefixes of \(p \) are prefixes of \(p \) itself. If there is no such \(s \geq 1 \), then \(f(j) = 0 \). The next lecture will cover how to compute the failure function and use it to run the wondrous Knuth-Morris-Pratt algorithm.

Here is an example of the failure function for the pattern \(p = \text{aabbaab} \). The function, \(f \) maps an integer index \(i \) to another integer such that \(0 \geq f(i) < i \). The inputs and outputs of \(f \) are represented in the table below:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_i)</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>(f(i))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

For example, \(f(7) = 3 \) since \(\text{aab} \) is the longest proper prefix of \(\text{aabbaab} \) that is also a suffix of \(\text{aabbaab} \).

11.2 Failure Function Algorithm

We will now present an algorithm to compute the failure function for a pattern \(p \). To see how the failure function is used by \(M_p \), let us define the function \(f^m(j) \) as follows:

i) \(f^1(j) = f(j) \), and

ii) \(f^m(j) = f(f^{m-1}(j)) \), for \(m > 1 \)

That is, \(f^m(j) \) is just \(f \) applied \(m \) times to \(j \). In our example above, \(f^2(6) = 1 \).
Supposed once again that \(M_p \) is in state \(j \), having read \(t_1 t_2 \ldots t_k \) and \(t_{k+1} \neq p_{j+1} \). At this point \(M_p \) applies the failure function repeatedly to \(j \) until it finds the smallest value of \(m \) for which either:

Case 1: \(f^m(j) = u \) and \(t_{k+1} = p_{k+1} \), or

Case 2: \(f^m(j) = 0 \) and \(t_{k+1} \neq p_1 \)

That is, \(M_p \) backs up through states \(f^1(j) \), \(f^2(j) \), and so on until either Case 1 or Case 2 holds for \(f^m(j) \) but not for \(f^{m-1}(j) \). In Case 1 \(M_p \) enters State \(u + 1 \) and in Case 2 \(M_p \) enters State 0. In either case, the input pointer is advanced to position \(t_{k+2} \). In Case 1 it is easy to verify that if \(p_1 p_2 \ldots p_j \) was the longest prefix of \(p \) that is a suffix of \(t_1 t_2 \ldots t_k \) then \(p_1 p_2 \ldots p_{f^m(j)+1} \) is the longest prefix of \(p \) that is a suffix of \(t_1 t_2 \ldots t_k t_{k+1} \). In Case 2, no prefix of \(p \) is a suffix of \(t_1 t_2 \ldots t_k t_{k+1} \).

\(M_p \) then proceeds processing input symbol \(t_{k+2} \). \(M_p \) continues operating in this fashion either until it enters the final state \(l \) in which case we know that the last input symbols constitute an instance of the patterns \(p = p_1 p_2 \ldots p_l \) or until \(M_p \) has processed the last input symbol of \(t \) without entering State \(l \), in which case we know that pattern \(p \) is not found in the input text \(t \).

11.3 An Example of the Failure Function

Now we’ll present an example of the failure function, as represented by a pattern matching machine \(M_p \). Let \(p = \text{aabbaab} \) and \(t = \text{abaabaabbaab} \). \(M_p \) is as follows, where the dashed arrows represent the failure function:

![Diagram](image.png)

<table>
<thead>
<tr>
<th>Input</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>//</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

For example, initially \(M_p \) is in State 0. On reading the first symbol of \(t \), \(M_p \) enters state 1. Since there is no transition from state 1 on the second input symbol of \(t \) (ie. \(b \)), \(M_p \) enters state 0. That is, \(M_p \) goes back to the state given by the output of the failure function from State 1. Now since the first symbol of \(p \) is not \(t_2 \), Case 2 from above prevails and \(M_p \) remains in state 0. From here \(M_p \) continues consuming characters in the input string and following the corresponding arrows. If the machine ever reaches State 7, the pattern \(p \) has been found in the text \(t \). The next set of notes will go into how we can calculate the failure function and apply it the task of finding any pattern \(p \) in any body of text.