9.1 Non-Deterministic Finite Automata

In this section we will introduce the concept of a non-deterministic finite automaton (NDFA / NFA). An NDFA is the non-deterministic equivalent of a DFA. It is defined in much the same way as a DFA.

Def: A non-deterministic finite automata is an \(M = (S, A, \delta, s_0, F) \) where...

1. \(S \) is the finite set of states of control
2. \(A \) is the alphabet from which input symbols are chosen
3. \(\delta \) is the state transition function
 \[\delta : S \times (A \cup \{ \epsilon \}) \to 2^S, \text{ where } 2^S \text{ denotes the set of all subsets of } S \]
4. \(s_0 \) is the initial state of the finite control
5. \(F \subseteq S \) is the set of final or accepting states

Note that the definition above only differs from the DFA definition with regards to the transition state function. In an NDFA, a state can accept a symbol from the alphabet and transition to any subset of the other states in the automaton. In other words, the NDFA can non-deterministically transition to one or more defined states on the same input symbol.

Let’s look at an example of an NDFA.

9.2 Example of an NDFA

Consider an NDFA \(M \) that accepts all strings that end in \(aba \). That is, \(L(M) = (a + b)^*aba \). We construct \(M \) as:

\[M = (\{s_1, s_2, s_3, s_4\}, \{a, b\}, \delta, s_1, \{s_4\}) \]

where \(\delta \) is given by:

<table>
<thead>
<tr>
<th>State (s)</th>
<th>Input (\epsilon)</th>
<th>(a)</th>
<th>(b)</th>
<th>(\epsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>{(s_1, s_2)}</td>
<td>{(s_1)}</td>
<td>(\varnothing)</td>
<td>(\varnothing)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(\varnothing)</td>
<td>(\varnothing)</td>
<td>({s_3})</td>
<td>(\varnothing)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>({s_4})</td>
<td>(\varnothing)</td>
<td>({s_1})</td>
<td>(\varnothing)</td>
</tr>
<tr>
<td>(s_4)</td>
<td>(\varnothing)</td>
<td>(\varnothing)</td>
<td>(\varnothing)</td>
<td>({s_2})</td>
</tr>
</tbody>
</table>

Below is a drawing of \(M \):
9.3 Transition Diagrams

Let $M = (S, A, \delta, s_0, F)$ be an NDFA. The transition diagram associated with M is a directed graph $G = (S, E)$ with labelled edges. Think of this as the formal name of the drawing of M above. The set of edges E and their labels are defined as follows:

- If $\delta(s, a)$ contains s' for some $a \in A \cup \{\epsilon\}$ then the edge (s, s') is in E.
- The label of (s, s') is the set of $b \in A \cup \{\epsilon\}$ such that $\delta(s, b)$ contains s'.

9.4 Theorems Relating DFAs, NDFAs, and Regular Languages

Theorem 9.1. Each language accepted by a non-deterministic finite automaton is a regular language.

Theorem 9.2. For every regular expression α there is a non-deterministic finite automata accepting the language denoted by the expression.

Corollary to 15.2: The set of all languages described by regular expressions is equivalent to the set of all languages described by NDFAs.

Theorem 9.3. If L is a regular language then L is accepted by a deterministic finite automaton.

Corollary to 15.3: The set of all languages described by NDFAs is equivalent to the set of all languages described by DFAs.

9.5 Constructing a DFA to Recognize a Suffix Pattern

We will now show an algorithm to construct a DFA for the language A^*p, where A is an alphabet and p is a pattern composed of symbols from A. In other words, the DFA will recognize any string over the alphabet A that ends in p. The DFA we construct will make exactly one state transition per input symbol.
Algorithm 1: Construction of DFA for A^*p

Input: A pattern string $p = p_1p_2...p_L$ over A where $p_{L+1} = \$,$ some new symbol that is not in A

Output: A DFA M such that $L(M) = A^*p$

1. Use Failure Function Algorithm (see previous notes) to construct the failure function, f, for p.
2. Let $M = (S, A, \delta, 0, \{L\})$, where $S = \{0, 1, 2, ..., L\}$ and δ is constructed as follows:

 procedure CONSTRUCT δ
 for $j \leftarrow 1, 2, \ldots, L$ do
 $\delta(j-1, p_j) = j$
 end for
 for each $a \in A$ such that $a \neq p_1$ do
 $\delta(a, 0) = 0$
 end for
 for $j \leftarrow 1, 2, \ldots, L$ do
 for each $a \in A$ such that $a \neq p_{j+1}$ do
 $\delta(j, a) = \delta(f(j), a)$
 end for
 end for
 end procedure

Theorem 9.4. The algorithm above constructs a DFA M such that $(0, t_1t_2...t_k)^* \vdash (j, \epsilon)$ if and only if $p_1...p_j$ is a suffix of $t_1...t_k$, but for no $i > j$ is $p_1...p_i$ a suffix of $t_1...t_k$.

The theorem above can be proved by induction. This proof is left as an exercise to the reader. Instead we will present an example of a DFA that accepts the A^*p where $A = \{a, b\}$ and $p = aabbaab$. That is, the DFA below accepts all strings given by the regular expression $(a+b)^*aabbaab$.

The only difference between M and M_p is that M has precomputed the next state in case of a mismatch. Thus M makes exactly one state transition on each input symbol.

9.6 Conclusion

As stated previously:

Theorem 9.5. In $O(|p| + |t|)$ time we can determine whether p is a substring of t.