9.1 The Failure Function

Continuing from last class, suppose after having read $t_1t_2...t_k$ (the first k characters of the text t) we find that M_p (the pattern matching machine we are trying to construct) is in State J. This implies that the last j symbols of $t_1t_2...t_k$ are $p_1p_2...p_j$ and the last m symbols of $t_1t_2...t_k$ are not a prefix of $p = p_1...p_l$ for $m > j$. But what about the case where $t_{k+1} \neq p_{j+1}$? That is, when the next symbol of the text is not the next symbol in the pattern. In this case M_p enters the highest number state i such that $p_1p_2...p_i$ is a suffix of $t_1t_2...t_{k+1}$. To help determine i, the machine M_p has associated with it an integer valued function f. This function f is called the failure function for the pattern p. We define f such that $f(j)$ is the largest integer s less than j for which $p_1...p_s$ is a suffix of $p_1p_2...p_j$. That is, $f(j)$ is the largest $s < j$ such that $p_1p_2...p_s = p_{j-s+1}p_{j-s+1}...p_j$. In words, s is the number of positions we can “fall back” to keep looking for the pattern p, based on the fact that the suffixes of some prefixes of p are prefixes of p itself. If there is no such $s \geq 1$, then $f(j) = 0$. The next lecture will cover how to compute the failure function and use it to run the wondrous Knuth-Morris-Pratt algorithm.

Here is an example of the failure function for the pattern $p = \text{aabbaab}$. The function, f maps an integer index i to another integer such that $0 \leq f(i) < i$. The inputs and outputs of f are represented in the table below:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$f(i)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

For example, $f(7) = 3$ since aab is the longest proper prefix of aabbaab that is also a suffix of aabbaab.

9.2 Failure Function Algorithm

We will now present an algorithm to compute the failure function for a pattern p. To see how the failure function is used by M_p, let us define the function $f^m(j)$ as follows:

i) $f^1(j) = f(j)$, and
ii) $f^m(j) = f(f^{m-1}(j))$, for $m > 1$

That is, $f^m(j)$ is just f applied m times to j. In our example above, $f^2(6) = 1$.

9-1
Supposed once again that M_p is in state j, having read $t_1t_2...t_k$ and $t_{k+1} \neq p_{j+1}$. At this point M_p applies the failure function repeatedly to j until it finds the smallest value of m for which either:

Case 1: $f^m(j) = u$ and $t_{k+1} = p_{k+1}$, or

Case 2: $f^m(j) = 0$ and $t_{k+1} \neq p_1$

That is, M_p backs up through states $f^1(j)$, $f^2(j)$, ..., and so on until either Case 1 or Case 2 holds for $f^m(j)$ but not for $f^{m-1}(j)$. In Case 1 M_p enters State $u + 1$ and in Case 2 M_p enters State 0. In either case, the input pointer is advanced to position t_{k+2}. In Case 1 it is easy to verify that if $p_1p_2...p_j$ was the longest prefix of p that is a suffix of $t_1t_2...t_k$ then $p_1p_2...p_{f^m(j)+1}$ is the longest prefix of p that is a suffix of $t_1t_2...t_kt_{k+1}$. In Case 2, no prefix of p is a suffix of $t_1t_2...t_kt_{k+1}$.

M_p then proceeds processing input symbol t_{k+2}. M_p continues operating in this fashion either until it enters the final state l in which case we know that the last input symbols constitute an instance of the patterns $p = p_1p_2...p_l$, or until M_p has processed the last input symbol of t without entering State l, in which case we know that pattern p is not found in the input text t.

9.3 An Example of the Failure Function

Now we’ll present an example of the failure function, as represented by a pattern matching machine M_p. Let $p = \text{aabbaab}$ and $t = \text{abaabaabbaab}$. M_p is as follows, where the dashed arrows represent the failure function:

For example, initially M_p is in State 0. On reading the first symbol of t, M_p enters state 1. Since there is no transition from state 1 on the second input symbol of t (ie. b), M_p enters state 0. That is, M_p goes back to the state given by the output of the failure function from State 1. Now since the first symbol of p is not t_2, Case 2 from above prevails and M_p remains in state 0. From here M_p continues consuming characters in the input string and following the corresponding arrows. If the machine ever reaches State 7, the pattern p has been found in the text t. The next set of notes will go into how we can calculate the failure function and apply it the task of finding any pattern p in any body of text.