LOCAL ALIGNMENT : Pairwise SEQ. Align.

GLOBAL

\[
\begin{align*}
X & \quad Y \\
\cdots & \\
\end{align*}
\]

LOCAL

\[
\begin{align*}
X & \quad Y \\
\end{align*}
\]

Consider all substrings of the X seq \(\alpha \) and all the substrings of the Y seq \(\beta \). Then align globally \(\alpha \) and \(\beta \).

The local optimal alignment is one of max score.

Substrings = contiguous subsequences

\[ACTAAASGT\]
Suerose

Subsequence

\[
\text{ACTAAA} \quad \text{GT} \quad \text{distinct subseq.}
\]

In local align we consider global aligns between contiguous subseq of \(X\) with contiguous subseq of \(Y\).

\[
\begin{array}{cccc}
X & & \cdots & N \\
Y & & \cdots & N \\
\end{array}
\]

\(O(m^2), \Theta(n^2)\)

all against all

\(O(m^2n^2)\) global aligns

Amazing: Finding optimal (max)
Local alignment: $O(MN)$

same time complexity as for global alignment.

"D" zero

GLOBAL ALIGNMENT

INPUT: Two sequences X, Y

and a scoring scheme S

OUTPUT:

MAX

GLOBAL OPTIMAL

GLOBAL ALIGNMENT

OF X and Y under

scoring scheme S

The Global Alignment Algorithm works with every scoring scheme.

```
ACGT
scoring A/C 11
```


\[S_1 \]

\[S_2 = S_1 + \text{add 27 to all entries} \]

For local alignment the Smith-Waterman Scheme is very special

Biology

The Smith-Waterman Arg

\(X, Y \) input seqs \& \(\delta \) the scoring scheme

\(X = \text{AACCTG} \quad Y = \text{AAGTGG} \)

prefix, suffix

Prefix of \(X = \{ \lambda, A, AA, A-AC, A-ACT, A-ACTG \} \)

\(\lambda = \text{empty} \)
$\text{Suffixes of } X = \{ TCG, ACTG, AACTG \}$

$\text{Substrings of } X = \{ \text{Suffixes U, Prefixes U} \}$

$\text{Suffices (Prefixes (X))} = \text{ACTG}$

$\text{Suffices (Suffices (X))} = \text{ACTG}$

$\text{The Local Alignment PE}$

Given X, Y, δ
Find X, Y such that γ
\[\begin{align*}
\text{substring of } x \\
\beta & \text{ substring of } y \\
\text{s.t. } \text{global align } x \text{ and } \beta \\
& \text{ is max among all choices of } x \text{ and } \beta.
\end{align*} \]

\[v^* = \text{optimal local alignment score (i.e. global align of)} \]
\[\max \text{ cost of } x \text{ and } \beta \]

\[x \]

\[Y \]

\[Y_i, Y_j \text{ prefixes of } x \text{ and } y \]
Suffixes (Prefixes) = All suffixes
v*(i, j) = value of the optimal global alignment between suffixes of x_i and y_j

\[V^* = \max \left\{ V(i, j), 0 \leq i \leq N, 0 \leq j \leq M \right\} \]

Proof:
1) \(V^* \geq \max \left\{ V(i, j), \ldots \right\} \)
 by def of \(V^* \)

2) \(V^* \leq \max \left\{ V(i, j), \ldots \right\} \)
 Indeed
 \[a^* \]
\[
V^* = V(i^*, j^*) \leq \text{MAX} \left\{ V(i, j) \right\}
\]

The Smith-Waterman Alg

The Local Align Alg

\[
V(i, 0) = V(0, j) = 0, \quad \forall i, j \\
\text{FOR } i > 0, j > 0 \text{ DO} \\
\quad V(i, j) = \text{max} \left[0, \\
\quad \quad V(i-1, j-1) + \delta(x_i, x_j), \\
\quad \quad V(i-1, j) + \delta(x_i, -), \\
\quad \quad V(i, j-1) + \delta(-, x_j) \right]
\]
\(\sum_{(i,j) \neq (-1,1)} + \delta(-1,1) \)

PAM

BLOSUM

3 Pillars:

- Computer Science
- Statistics
- Biology = Math Models of Evolution

Margaret Dayhoff

BLOSUM (Henikoff & Henikoff 1992)
20 letter alphabet for protein sequences

20 amino acids (capital letters)

WWYtR
WFYtR
WYYtR
WYYtR
WFYKR

Example:

BABA
AAAC
AACc
AABA
AACc
AABC

Think about for a column think of a pair of rows as a substitution

"block"

multiple gap-less align
of one amino acid (letter) into another

24 amino acids observed
4 × 6
14 are A
4 are B
6 are C

<table>
<thead>
<tr>
<th>aa</th>
<th>freq obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
</tr>
</tbody>
</table>

4. \(\binom{6}{2} = 60 \) aligned pairs
<table>
<thead>
<tr>
<th>A to A</th>
<th>(\frac{26}{60})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A to B</td>
<td>(\frac{8}{60})</td>
</tr>
<tr>
<td>A to C</td>
<td>(\frac{10}{60})</td>
</tr>
<tr>
<td>B to B</td>
<td>(\frac{3}{60})</td>
</tr>
<tr>
<td>B to C</td>
<td>(\frac{6}{60})</td>
</tr>
<tr>
<td>C to C</td>
<td>(\frac{7}{60})</td>
</tr>
</tbody>
</table>

Result:

\[P_{AB} = \frac{3}{20} \]

\[P_{AC} = \frac{14}{24} \]

\[P_{BC} = \frac{14}{24} \]

\[P_{\text{total}} = 0.6 \]
SCORING SCHEME
Hypothesis Testing
Likelihood Ratio

\[2 \log_2 \left(\frac{\text{observed}}{\text{expected}} \right) \]

BLOSUM

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>-2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

A to A: 0.70
A to B: -1.09
A to C: -1