Hello Class

STATISTICAL FOUNDATIONS

CS Foundations

Biology Foundations

Heuristic interpretation of the "alignment score"

\[X = \text{AACGTAAT} \]
\[Y = \text{ACGCGTGT} \]

scoring scheme

\[\alpha \cdot \begin{cases} 1 & \text{match} \\ -1 & \text{gap (incl.)} \\ -2 & \text{mismatch} \end{cases} \]

\[p = \text{prob. of a match} \]
\[q = \text{prob. of a mismatch} \]
\[r = \text{prob. of a single gap} \]

\[\gamma = \text{probability of the alignment } A \]

\[P = p^4 q^2 r^2 \]
Take the log likelihood
\[s' = \log_2 \frac{P_y}{P_x} = \log_2 \frac{q^2}{p^2} = \]
\[= 4 \log p + 2 \log q + 2 \log r \]

Consider
\[s = s' - 8 \log k \quad k \text{ is picked such that } \log \left(\frac{p}{k} \right) = 1 \]

\[s = s' - 8 \log k = \]
\[4 \log p + 2 \log q + 2 \log r - \]
\[-4 \log k - 2 \log k - 2 \log k = \]
\[= 4 \log \left(\frac{p}{k} \right) + 2 \log \left(\frac{q}{k} \right) + 2 \log \left(\frac{r}{k} \right) = \]
\[= 1 - \frac{2u}{n} - \frac{2z}{n} = \]
\[= 4 - 2u - 2z \geq \text{ MAX} \]

 Alignment of max score
\[\equiv \text{maximizing the likelihood of the alignment} \]
GLOBAL ALIGNMENT

The Needleman-Wunsch Alg.

Edit Graph

Input: X, Y sequences
8 scoring scheme/matrix

Output: Alignment of max score

Edit Graph

\[G_{\text{vertices}} = (M+1) \times (N+1) \]

\[|X| = N \quad |Y| = M \]

represented as a rectangular grid = Matrix

\[(i,j) \text{ coordinates} \]

\[X = x_1 x_2 \ldots x_M \]

\[Y = y_1 y_2 \ldots y_N \]

\[x_{i,j} \in \Sigma \]

Edges

\[1 \leq i \leq M \]

\[0 \leq j \leq N \]

\[(i-1,j) \rightarrow (i,j) \]

\[(i,j) \rightarrow (i,j+1) \]
CONCLUSION: ONLY at most 3 DIRECT edges are coming into (i,j)

There is a one-to-one correspondence between paths between BEGIN and END nodes in the edit graph and alignments of the
two sequences

\[n \]

\[M = N \]

\[\text{BEGIN} \]

\[\text{END} \]

\[c_i \text{ in } N \]

\[d_i \]

\[\geq 2^n \]

There are exponentially many alignment for two sequences of size \(N \)

\[A \ C \ G \ T \ T \ T \]

\[\text{BEGIN} \]

\[(i) \]

\[s(i,j) \]

\[(i,j) \]
Cost of the optimal alignment from BEGIN to \((i,j)\)

\[S = \text{matrix, DP matrix} \]

\[\text{DP} = \text{Dynamic Programming} \]

\[S(i,j) = \text{the score of the max score path from BEGIN to (i,j) ending in } S. \]

\[S(i,j) = \max \left(S(i-1,j-1) + \delta(x_i, y_j) \right) \]
Global Alignment Algorithm

\[S[0,0] = 0 \]

\[\text{FOR} \ i = 1 \ \text{to} \ M \ \text{DO} \]

\[S[i,0] = S[i-1,0] + \delta(z_{i,\cdot}) \]

\[\text{FOR} \ j = 1 \ \text{to} \ N \ \text{DO} \]

\[S[0,j] = S[0,j-1] + \delta(\cdot,y_{\cdot,j}) \]

\[\text{FOR} \ i = 1 \ \text{to} \ M \ \text{DO} \]

\[S[i,j] = \max \left\{ S[i-1,j-1] + \delta(z_{i,j}), \right. \]

\[S[i-1,j] + \delta(z_{i,j}), \]

\[S[i,j-1] + \delta(\cdot, y_{\cdot,j}) \]}

\[\text{PRINT } (\text{MAX SCOR} = \text{S}[M,N]) \]

Phase 1: Compute max score for the alignment
Phase 2: Traceback: construct the actual optimal (max score) alignment

3 big differences between GLOBAL & LOCAL

1. initialization
2. "0" in the recurrence
3. scoring matrix vs. in a drug