Ch 2. Combinatorial Pattern Matching Algorithms

2.1. Finite automata & Regular Expressions

2.1. Knuth-Morris-Pratt Alg
2.2. BW-Transform
2.3. Suffix Tree Algorithms
2.3 Suffix Tree Algorithm

A data structure for storing all the substrings of a string.

An example.

\[\Sigma = \{a, b\}, \quad \$ \notin \Sigma \]

Input string: \(W = abaabbaa\$ \)

Set of suffixes of \(W \):

1. \(abaabbaa\$ \)
2. \(abbaa\$ \)
3. \(aabb\$ \)
4. \(abbaa\$ \)
5. \(bbaa\$ \)
6. \(baaa\$ \)
7. \(aaa\$ \)
8. \(aa\$ \)
9. \(a\$ \)
If \(|w|=n \) there are \(n \) \(b \)'s.

and \(1+2+\ldots+n = \frac{n(n+1)}{2} \geq O(m^2) \) storage

The most practically used data structure in computer biology/bioinformatics

\[w = ababaababacaq $ \]

\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \]

Path length of suffix 5 is \(264aaq $ \)

\(O(m^2) \) time

\(O(m^2) \) space

is \(abb \) substring of \(w \)?

YES

is \(aabb \) substring of \(w \)?

NO
A suffix tree for string \(W \) is a data structure satisfying the following properties:

1. It stores the starting position of each suffix (marked as the leaves).

2. It stores every substring of \(W \).

3. Each suffix of \(W \) can be identified as a path label from the root vertex to some leaf, AND vice-versa: every path from a leaf to the root is a path label for a suffix of \(W \).

4. Every internal node has at least two successor vertices/links.
(5) edges leaving some node are labeled with substrings of w with different first characters

(6) every leaf is labeled with the starting position of the suffix of w that looks suffix as a path label

$w = a b a a b b a a a q$ $\$
1 2 3 4 5 6 7 8 9

Diagram of a suffix tree with nodes labeled with suffixes of w. The root is labeled with the entire string, and each node is labeled with a substring of w. The leaves are numbered from 1 to 9, corresponding to the starting positions of the suffixes.
Construct the suffix tree in linear space: $O(m)$

It's a very simple trick.

Represent a string by a pair of positions: begin substring and end substring.

$w = abaabbaaaq$

1 2 3 4 5 6 7 8 9

Substring $aaba$ $[3, 6]$,

Substring $abaq$ $[1, 4, 7]$.

Representing each substring that way gives $O(m)$ space for ST.
t = text (long string)
p = pattern (short string)

You can solve the KMP problem with Suffix Trees

Solution
- Construct a Suffix Tree for t
- Ask if p is a substring of t

- Start spelling p from a root of the suffix tree
 - If you can finish testing p as a path from the root, then answer YES p occurs exactly in t.
- If along the way you get stuck, cannot continue reading p then
answer no.

Solve more

w = abaabbbabaa

The EX.

Again

123456789
Now in $O(m)$ space