The KNUTH MORRIS PRATT (KMP) Algorithm

The Pattern Matching Problem

Given a pattern \(p = p_1 \ldots p_k \), \(p_i \in \Sigma \)
and a text \(t = t_1 \ldots t_n \), \(t_i \in \Sigma \)

patterns short
text = long, very long

Compute the first exact occurrence of \(p \) in \(t \).

\[\begin{align*}
n = 1000,000 \quad l = 1000 & \quad \text{naive} \\
\end{align*} \]
KMP $O(\ell + m)$ tremendous speedup

optimal, practical

We will construct a finite automata M_p based only on p.

Find first exact occurrence of p in t.

$p = \cdots \quad (\text{no p exact match found})$

$\Sigma = \{a, b\}$

We first build a skeletal machine DFA (det FA) with $\ell + 1$ states

$p = p_1 \cdots p_e, \quad p_i \in \Sigma$

we stay in state $\not\circ$ till the first p_1 symbol
• State 0 has a transition to itself on all symbols except $p_i \neq p_1$

• We can think of state i as a pointer to the i^{th} position in the pattern p

• The M_p operates like a deterministic finite automata except that it can make several state transitions while reading the state input symbol

\[s \rightarrow s' \rightarrow s'' \]

\[\begin{array}{c} \text{Input} \\
\text{Symbols} \end{array} \]

(At the end we will "fix" the algorithm to operate exactly as a deterministic finite automata)

• M_p has the same states as the skeletal machine
Thus the state j of M_p corresponds to prefix $p_1p_2...p_j$ of pattern string p.

- The text $t = t_1t_2...t_n$, $t_i \in \Sigma$

- M_p starts in state 0 with its tape head reading the first symbol of t

 $t = t_1...t_n$
IF \(p_1 = t_1 \) THEN state \(1 \) and advance its tape head to position 2 in \(t_j \), i.e., \(t_2 \).

IF \(p_1 \neq t_1 \) then \(M_p \) remains in state \(0 \) and advances its tape head to \(t_2 \).

Suppose that after we "read" \(t_1 t_2 t_3 \ldots t_k \) and \(M_p \) then is in state \(j \). This implies that the last \(j \) symbols from \(t_1 \) to \(t_k \).
are P_1, P_2, \ldots, P_j.

Prefix of P.

"suffix-prefix" the key to the algorithm insight.

IF $t = P_{k+1}$, the next symbol of text t, agrees with P_{k+1}, then M_p advances to state $j+1$ and its tape head reads now t_{k+2}.

IF $t_{k+1} \neq P_{j+1}$, THEN M_p enters the highest number.
State i such that $\forall j \leq i \text{ max such } \rho_1 \rho_2 \ldots \rho_i$ is a suffix of $t_1 t_2 \ldots t_{k+1}$

"Skip as much as you can without missing any match of p" is the largest i

Going back is failure function

How to find i?

To help finding i the machine M has associated with it an integer valued function f called the failure function defined as follows:
f(j) is the largest s < j for which
\[p_1 p_2 \ldots p_s \text{ is a suffix of } p_1 p_2 \ldots p_j \]
\[p_1 \ldots p_s \text{ is a prefix of } p \]
\[p_1 \ldots p_s \text{ is a suffix of } p_1 p_2 \ldots p_j \]

That is, \(f(j) \) is the largest \(s \), \(1 < j \) such that:
\[p_1 p_2 \ldots p_s = p_{j-s+1} p_{j-s+2} \ldots p_j \]
Example

\[p = aabbaaab \]

Failure function \(f \) of \(p \):

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(j))</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

\[j = 1 \quad f(1) = 0 \]

\[j = 2 \quad p_1 p_2 = aa \quad i = 1 \]

\[a \text{ is a prefix} \]
\[a \text{ is a suffix of } \sum p_i p_k \]

\[|a| = 1 \quad f(j) = 1 = f(2) \]

\[j = 3 \quad p_1 p_2 p_3 = aab \quad \text{no suffix is prefix} \]

\[f(j) = 0 = f(4) \]

\[j = 4 \quad p_1 p_2 p_3 p_4 = aa \ 6b \]

\[\text{no suffix} \]

\[f(j) = 0 = f(4) \]
\[j = 5 \quad p_1 p_2 p_3 p_4 p_5 = a a b b a \]

largest prefix that is suffix is a
\[f(5) = 1 = f(5) \]

\[j = 6 \quad p_1 p_2 p_3 p_4 p_5 p_6 = a a b b a a \]
a is prefix that is also suffix
aa is prefix that is also suffix
max: aa is the max such
\[f(j) = 2 \]

\[j = 7 \quad p_1 p_2 p_3 p_4 p_5 p_6 p_7 = a a b b a a b \]

yes aab is prefix and also suffix
\[f(j) = 3 \quad f(7) \]
What is:

<table>
<thead>
<tr>
<th>$f(7)$</th>
<th>$f(3)$</th>
<th>$f(6)$</th>
<th>$f(2)$</th>
<th>$f(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

will use f repeatedly till we find the right match to extend with t as a match $k+1$.

The Failure Function Algorithm

To see how the failure function is used by M_p, let us define the function

\[f(m)(j) \]

as follows:

i) $f(j) = f(j)$, and
ii) \(f^m(j) = f(f^{m-1}(j)) \)
for \(m > 1 \)

ex. \(f^{(3)}(j) = f(f(f(j))) \)

Ex. \(f^{(2)}(6) = 1 \)

\(f(6) = 2, f(2) = 1 \)

That is, \(f^{(m)}(j) \) is just \(f \) applied \(m \) times to \(j \)

Suppose once again that \(M_p \) is in state \(j \) having read \(t_1, t_2, \ldots, t_k \) and \(t_k \neq P_{j+1} \)
At trip point M_p applies its failure function repeatedly to j until it finds the smallest value of m for which:

Case 1. $f^{(m)} (j) = 0$ and $t_{k+1} = P_{i+1}$

Case 2. $f^{(m)} (j) = 0$ and $t_{k+1} \neq P_i$

That is, M_p backs up through states $f^{(1)} (j), f^{(2)} (j), ...$ until we get to either **Case 1** or
Case 2 holds for \(f(\text{su}) \) but not for \(f(\text{m}^{-1}) \) for \(f(\text{T}_j) \).

In Case 1: \(M_p \) enters state \(u+1 \).

In Case 2: \(M_p \) enters state \(0 \).

In either case, the tape head advances to \(t_{k+2} \).

In Case 1: it is easy to see that if \(p_1 p_2 \ldots p_j \) was the longest prefix of \(p \) that is also a suffix of \(t_1 t_2 \ldots t_k \) then \(p_1 p_2 \ldots P_f(\text{m})(j)+1 \) is the longest.
Prefix of p that is also a suffix of $t_1 t_2 \ldots t_k t_{k+1}$

In Case 2: no prefix of p is a suffix of $t_1 t_2 \ldots t_k t_{k+1}$

. M_p then proceeds processing the text symbol t_{k+2}.

. M_p continues operating in this fashion either until it enters the final state (in which case we know that the last text symbol
constitute an instance of the pattern
\[p = P_1 P_2 \cdots P_r, \]
or until \(M_p \) has processed the last symbol of text \(t \) without entering the final state 1, in which case we know that \(p \) is not a substring of \(t \).

\[\text{EXAMPLE} \]

INPUT: \(p = a a b b a a b \)
\(t = a b a a b a a b b a b a b a a b \)
failure (see table) \(\Sigma = \{a, b\} \)

\[p = a a b b a a a b \]

\[t = a b a a b a a b a a b a a b a a b a a b \]

State:

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 2 & 3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}
\]

At pos 6-12

is the pattern \(P \)

FAILURE FUNCTION ALGORITHM

INPUT: \(p = p_1 p_2 \cdots p_e, e \geq 1 \)

OUTPUT: \(f \), The failure function for \(p \)
\begin{aligned}
\text{BEGIN} \\
L_1 & \quad f(i) = 0, \quad i = 0 \\
L_2 & \quad \text{FOR } j = 2 \text{ to } n \text{ DO} \\
L_3 & \quad \text{BEGIN} \\
L_4 & \quad \quad i = f(j-1) \\
L_5 & \quad \quad \text{WHILE } p_j \neq p_{i+1} \text{ AND } i > 0 \\
L_6 & \quad \quad \quad \text{DO } i = f(i) \\
L_7 & \quad \quad \quad \text{IF } p_j \neq p_{i+1} \text{ AND } i = 0 \\
L_8 & \quad \quad \quad \quad \text{THEN } f(j) = 0 \\
L_9 & \quad \quad \quad \quad \text{ELSE } f(j) = i + 1 \\
L_10 & \quad \text{END} \\
\text{END}
\end{aligned}
\[p = a a b b a a b \]

\[j = 1 \quad f(i) = 0, j \cdot i = 0 \]

\[j = 2 \quad i = f(j - 1) = f(1) = 0 \]

\[\text{while } p_j \neq p_{i+1} \text{ and } i > 0 \]

\[p_2 \neq p_1 \text{ and } i > 0? \]

\[\text{if } p_j \neq p_{i+1} \text{ and } i = 0 \]

\[\text{NOT } \]

\[\text{else } f(j) = i + 1 = 1 \]

\[j = 3 \quad i = f(j - 1) = f(2) = 1 \]

\[\text{while } p_3 \neq p_2 \text{ and } i > 0 \]

\[b \neq a \text{ YES } \]

\[\text{YES} \]

\[i = f(i) = 0 \]
If $p_3 + p_2 = \varphi \wedge i = 0$

$j = 4 \quad j = 4$

$i = \mathcal{F}(j-1) = \mathcal{F}(3) = 0$

which

$p_4 \neq p_1$ and $i > 0$

$s \neq a$ and $i > 0$

If $p_4 \neq p_1$ and $i = 0$

Then $\mathcal{F}(4) = 0$

$j = 5$

$i = \mathcal{F}(j-1) = \mathcal{F}(4) = 0$

while $p_5 \neq p_1$ and $i > 0$

no
\[i = 5 \neq p_1 \land i = 0 \quad \text{YES} \]
\[\text{ELSE } f(5) = 1 \]

\[j = 6 \]
\[i = f(j - 1) = f(5) = 1 \]

\[\text{while } p_j \neq p_{i+1} \land i = 0 \]
\[a \neq a \quad \text{NO} \]
\[\text{ELSE } f(6) = 2 \]

\[j = 7 \]
\[i = f(j - 1) = f(6) = 2 \]
while \(p_1 \neq p_3 \) and \(i < 5 \)

\[\text{not} \]

\[(\text{if } p_1 \neq p_3 \text{ and } i = 0 \text{ then true}) \]

\[\text{else } \ell(?) = i+i = 3 \]

THEOREM

The Failure Function Algorithm computes \(\ell \) in \(O(|e|) \) steps where \(|e| = |p_1| \cdot (\text{length of } p) \)

PROOF

L.3 and L.5 have constant computation time/cost, i.e., the number of time units
The cost of the while statement is proportional to the number of times \(i \) is decreased by the value \(f(i) \) on line 24 following the do. Remember: by definition \(f(i) < i \). So decrease indeed.

The only way \(i \) increases is by the assignment
\[f(j) = i \times 1 \] by \textit{L6} then incrementing \(j \) by 1 at \textit{L2} and then setting \(i = f(j-1) \) at \textit{L3}

Since \(i = 0 \) initially, and \textit{L6} is executed \(n-1 \) times, we conclude that the \underline{while} statement on \textit{L4} cannot be executed more than \(n \) times.
Thus the total cost of executing L4 is $O(t)$. The remaining instructions in the algorithm take $O(p)$ time, and thus the entire algorithm is $O(t)$.

Q E D
General time complexity of the KMP Algorithm

We can show by induction (like in proof of correctness of the algorithm) that the pattern matching machine \(M_p \) will be in state \(q_i \) after reading the
if and only if

$p_1p_2\ldots p_i$ is the longest prefix of p

that is a suffix of $t_1t_2\ldots t_k$.

Thus M_p correctly finds the leftmost occurrence of p in
the text

$t = t_1\ldots t_n$
By the correctness of the Failure Function Algorithm, showing linear time for computing it, we can show that M_p will execute at most $2 \cdot |I| \cdot |S|$ state transitions when processing input t.

Thus we can determine whether p is a substring.
of t by tracing out the state transitions of M_p on input t.

To do this all we need is the failure function fail for p.

This can be constructed in time $O(|p|) = O(e)$.

Thus we can determine whether p is a substring of t in
$O(1/p1 + 1/p2)$ time independent of the alphabet size.