Deterministic Finite Automaton:

- **DFA**: a finite-state machine that *accepts* and *rejects* finite strings of symbols and produces a unique computation of the automaton for each input string.
 - *Deterministic*: the uniqueness of the computation
 - For each pair of states and possible input chars, there is a unique next state
 - *Start state*: where computations begin
 - *Accept states*: define when a computation is successful
- Represented by *state diagrams*

Formal Definition: a deterministic finite automaton M is a 5-tuple, (S, A, ∂, s_0, F) consisting of
- A finite set of states (S)
- A finite set of input symbols (the alphabet A)
- A transition function ($\partial : S \times A \rightarrow S$)
- An initial or start state (s_0)
- A set of accept states ($F \subseteq Q$)

The automaton M accepts a string $w = a_1a_2…a_n$ if a sequence of states $r_0r_1…r_n$ exists in A with the following conditions:

1) $r_0 = s_0$ (the machine starts in the start state s_0)
2) $r_{i+1} = \partial(r_i, a_{i+1})$ for $i = 0, …, n-1$ (given each character of string w, the machine will transition from state to state according to the transition function ∂)
3) $r_n \in F$ (the machine accepts w if the last input of w causes the machine to halt in one of the accepting states)

Regular Expressions

- Finite automata are used to *recognize* patterns of strings; regular expressions are used to *generate* patterns of strings

Operands can be:
- *Characters* from the alphabet over which the regular expression is defined
- *Variables* whose values are any pattern defined by a regular expression
- *Epsilon* which denotes the empty string containing no characters
- *Null* which denotes the empty set of strings

Operators include:
- Union: if R_1 and R_2 are regular expressions, the $R_1 + R_2$ is also a regular expression
- Concatenation: if R_1 and R_2 are regular expressions, then $R_1 . R_2$ is also a regular expression
- Kleene closure: if R_1 is a regular expression, then R_1* is also a regular expression

Constructing a RE from a FA

Examples:

<table>
<thead>
<tr>
<th>Regular Expressions</th>
<th>Regular Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0 + 10^*)$</td>
<td>$L = {0, 1, 10, 100, 1000, \ldots}$</td>
</tr>
<tr>
<td>$(0^10^)$</td>
<td>$L = {1, 01, 10, 010, 0010, \ldots}$</td>
</tr>
<tr>
<td>$(0 + \varepsilon)\ (1 + \varepsilon)$</td>
<td>$L = {\varepsilon, 0, 1, 01}$</td>
</tr>
<tr>
<td>$(a + b)^*abb$</td>
<td>$L = {abb, aabb, babb, aaabb, ababb, \ldots}$</td>
</tr>
<tr>
<td>$(11)^*$</td>
<td>$L = {a, 11, 111, 11111, \ldots}$</td>
</tr>
<tr>
<td>$(aa)*((bb)*b$</td>
<td>$L = {b, aab, aabbb, aabbb, aabbb, \ldots}$</td>
</tr>
</tbody>
</table>
A language is regular if it is denoted by a regular expression:

<table>
<thead>
<tr>
<th>Set</th>
<th>Regular?</th>
<th>Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = {0^m \mid m \geq 0})</td>
<td>Yes</td>
<td>(0^*)</td>
</tr>
<tr>
<td>(L = {0^n1000 \mid n \geq 10})</td>
<td>Yes</td>
<td>(0^{10}0^*1100)</td>
</tr>
<tr>
<td>(L = {01^{n}001^m \mid n,m \geq 11})</td>
<td>Yes</td>
<td>(01^{11}1001^{11}1^)</td>
</tr>
<tr>
<td>(L = {0^n1^m \mid n \geq 1})</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Knuth-Morris-Pratt Algorithm
- Searches for occurrences of a word \(W \) within a main text string \(P \)
- See lecture notes for pseudocode

Efficiency of the Search Algorithm:
- \(O(n) \), where \(n \) is the length of \(s \)

Failure Function
- Allow the algorithm not to match any character of \(S \) more than once
- “Pre-search” the pattern and compile a list of all possible fallback positions
- \(f[i] \) is the length of the longest proper initial segment of \(p \) that is also a segment of the substring ending at \(p[i-1] \)

Example:

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p[i])</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>(f[i])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Efficiency of Failure Function:
- \(O(k) \), where \(k \) is the length of \(p \)