CSCI 1800 Cybersecurity and International Relations

Security Through Software Engineering

John E. Savage

Brown University
Outline

- Security modeling including access control
- Federal security regulations and standards
- Software vulnerability assessments
- Microsoft’s Security Development Lifecycle
- Introduction to Threat Analysis
- Security can be violated even if code is perfect
Policy, Models and Trust

• To have secure systems, engineers need
 – Clear security goals
 – Effective implementation strategy

• A security policy puts constraints on actions that can taken by actors on objects in the system in order to achieve security goals.
Components of a Security Policy

- **Actors**
 - Individual or group agents interacting with a system.

- **Objects**
 - Informational/computational resources affected by policy.

- **Actions**
 - Possible modifications to objects, e.g. read, edit, copy, remove

- **Permissions**
 - Rules constraining actions that actors may take on objects.

- **Protections**
 - Policy features, e.g. confidentiality, integrity, availability (CIA)
What is a Security Model?

• A security model is an abstraction providing conceptual language to specify security policies.
 – E.g. Unclassified (U), Confidential (C), Secret (S), Top Secret (TS)
 – Compartments for sensitive compartmentalized information (SCI), such as human intelligence (HUMINT), satellite observations (GEOINT), signals intelligence (SIGINT)
 – Why are these compartments sensitive?
Two Models of Access Control

• **Discretionary access control**
 – Owner may specify permissions on files
 – A more relaxed form of control

• **Mandatory access control**
 – Administrator fixes permissions in advance.
 – More strict control

• **Rules** have **subjects** (parties requesting access) and **objects** (those things being accessed).
Bell-LaPadula (BLP) Access Control Model

• Applies to confidentiality – dates from the 1970s
• Object x and user u have security levels L(x) & L(u)
 – Examples of security levels: U, C, S, TS
• For users u and v, v has higher clearance than u if L(u) ≤ L(v). u can pass info to v but not vice versa.

• No “read up” (user can’t see more secure data)
 – User u can read x only if L(x) ≤ L(u)
• No “write down” (user can’t use more secure data)
 – User u can write to object x only if L(u) ≤ L(x).
BLP Access Control Model

No read up

No write down

$L(u) \leq L(v)$

BLP model weakness: only handles confidentiality
Ken Biba (‘77) Access Control Model

• Goal of Biba’s model is to maintain **data integrity**:
 – i.e. **accuracy** and **consistency of data** over its life-cycle.

• Let $I(x)$ and $I(u)$ be the integrity of user u & object x
 – The **larger** is $I(u)$ or $I(x)$ the **more trustworthy** is the user
 u or accurate the object x.

• **Don’t** read from lower integrity level
 – User u can read object x only if $I(u) \leq I(x)$.

• **Don’t** write to higher integrity level.
 – User u can write to object x only if $I(x) \leq I(u)$.
What is Role-Based Access Control?

- **Components:** users, roles, permissions, sessions
 - A **role** is a collection of users.
 - A **session** is an interaction for a period of time.
- **Role hierarchy** is defined, as in a corporation.
 - President **IsA** manager **IsA** employee
 - **Higher role user inherits permissions of lower one**
 - When is this **not** a good idea?
- **Role constraints** may be imposed
 - Example: avoid conflicts of interest.
USG Security Standards

 – Division A: system has a formal process for verification of security
 – Division B: mandatory access control
 – Division C: discretionary access control
 – Division D: minimal protection criteria
USG Security Standards

• **Common Criteria** for Information Technology Security Evaluation – an **ISO standard**
 – It subsumes the Orange Book
 – Defines key concepts related to security evaluations
 – Framework for documenting security goals
 – Not a certification vouching for product security.
Government Regulations & Standards

• HIPAA (1996)
 – Sets privacy standards on patient records for healthcare providers and employers.

• Family Educational Rights and Privacy Act (FERPA) (‘74)
 – Requires protection of privacy of educational records in US

• Federal Information Security Management Act (FISMA)
 – Revised in 2014 – regulates government information security.
 – It requires federal agencies to implement processes and controls designed to ensure the confidentiality, integrity, and availability of system-related information.
 – Must follow FISMA and NIST standards, and legislative requirements, such as the Privacy Act of 1974.
Software Vulnerability Assessment

• The problem: software can be enormous
 – Mac OS X 10.4 has > 86 million lines of code!
 – Code can have both performance & security bugs

• “A vulnerability is a security exposure that results from a product weakness ... the product developer did not intend to introduce and should fix once it is discovered.”*

• How many errors per 1,000 lines of code (KLOC)?
 – Estimates vary from 15-50 defects per KLOC
 – MSFT says bug density of .5 bugs/KLOC in production†

* Microsoft definition
† https://labs.sogeti.com/how-many-defects-are-too-many/
Approaches to Vulnerability Assessment

• **Black-box analysis**
 – Penetration test (pentest) done without knowledge of innards.
 – Pentests look for security vulnerabilities

• **White-box analysis**
 – Same but with full knowledge of hardware/software, network environment, etc.
Code Analysis for Privacy/Security

• Problem: Cybercrime is here to stay.
• Goal: Find and remove privacy/security hazards.
 – Static code analysis studies non-running programs.
 • This is white-box testing of non-running code.
 – Dynamic analysis examines running programs.
• Good analysis requires training and investment
 – Software engineers generally not educated on this.
 – Microsoft’s Security Development Lifecycle (SDL) represents a big step forward.
• Benefits: Improved security, privacy and reliability.
Components of Static Code Analysis*

• **Data Flow Analysis**
 – Based on analysis of basic blocks, sections of code in which control stays within a block during execution

• **Control flow graph (CFG)**
 – Shows all possible control paths

• **Taint analysis**
 – It identifies variables touched by users or “tainted”
 – How tainted variables influence the CFG and actions

* https://www.owasp.org/index.php/Static_Code_Analysis
Example of a Basic Block

```php
$a = 0;
b = 1;

if ($a == $b)
{
    echo “a and b are the same”;
}
else
{
    echo “a and b are different”;
}
```

Note: # starts a comment
Modeling System Threats

- *Data flow analysis* is preferable to focusing on assets or studying motivations of attackers.
- Group components by trust boundaries

![Diagram](Diagram.png)
Dynamic Code Analysis

• Good analysis **explores all important paths**
 – Requires good choice of test data
 – Incomplete testing can result in catastrophic failure

• **Fuzzing** can reveal hidden errors
 – User tries inputs of length 1, 2, 3, ... until some limit
 – Note: *malware may detect it is being run* in a virtual environment and *not exhibit its malicious behavior*

• Many tools exist for dynamic software analysis
2018 Verizon Data Breach Report*

Who's behind the breaches?

73% perpetrated by outsiders
28% involved internal actors
2% involved partners
2% featured multiple parties
50% of breaches were carried out by organized criminal groups
12% of breaches involved actors identified as nation-state or state-affiliated

Source: 444 x 10^6 malware detections
Organizations: 130,000
22 = Median number malwares/org/year

Information Security Attributes
The CIA Triad

• **Confidentiality**: Access to information is limited to those with proper authorization.

• **Integrity**: Maintaining the consistency, accuracy and trustworthiness of data during its life cycle.

• **Availability**: Reliable access is maintained to resources by authorized parties.
Microsoft’s Security Development Lifecycle (SDL)

- **Bill Gates** inaugurated Microsoft’s Trustworthy Computing Initiative in 2002.
 - Success with major new corporate initiatives often requires support from top management.
- Every product that impacts privacy or may be used by children needs security analysis.
 - This means almost all hardware/software products
- Microsoft code is now among the most secure!
Relative Cost of Fixing Defects*

* https://www.researchgate.net/figure/255965523_fig1_Figure-3-IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects
Microsoft’s SDL

- Personnel must be trained.
- Security requirements, risk assessment needed
- Must do threat modeling (STRIDE) and reduce attack surface.
 - Spoofing, Tampering, Repudiation, Information Disclosure, Denial of service, Elevation of privilege.
- Implementation requires good tools to protect against attacks
- Must plan for post-release handling of errors
- Verification needed via dynamic analysis including fuzzing.
STRIDE Threats*

- S – Spoofing
- T – Tampering
- R – Repudiation
- I – Information Disclosure
- D – Denial of Access or Service
- E – Elevation of Privilege

* Microsoft’s mnemonic for types of software threats
STRIDE Explained

- S – pretending to be another person or thing
- T – modifying something one should not
- R – falsely claiming not to have taken an action
- I – exposing information to those unauthorized
- D – denying users access to a service
- E – acquiring access at an elevated level
STRIDE Elaborated

<table>
<thead>
<tr>
<th>Threats</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoofing</td>
<td>Authenticity</td>
</tr>
<tr>
<td>Tampering</td>
<td>Integrity</td>
</tr>
<tr>
<td>Repudiation</td>
<td>Non-Repudiation</td>
</tr>
<tr>
<td>Information Disclosure</td>
<td>Confidentiality</td>
</tr>
<tr>
<td>Denial of Service</td>
<td>Availability</td>
</tr>
<tr>
<td>Elevation of Privilege</td>
<td>Proper Authorization</td>
</tr>
</tbody>
</table>
Options to Address Threats (META)

• Mitigate a threat
 – Increase the work to exploit it

• Eliminate a threat
 – Usually requires elimination of features

• Transfer of a threat
 – Let some other system element cope with it

• Accept a threat
 – Risk acceptance may be less costly than other steps
Source Material

Is Open Source Software a Panacea?

• Software is available for modification under liberal copyright policy.

• Do many eyeballs on the code make it secure?
 – “… in reality that doesn’t happen” Cowan 2002.

• Russia believes it – avoids US software.
 – Putin orders Russian government to move to Open Source Software by 2015. (12/28/2010)

• Problems: No incentive to find bugs. Coders not trained to find them. It is hard!

Exploitation of Bug-Free Software*

• Talk: Software Exploitation: Hardware is the New Black by Cristiano Giuggrida, MIT, 11/5/08
 – “Even bug-free (say formally verified) software can be successfully targeted by a relatively low-effort attacker.”
 – “[S]tate-of-the-art security defenses, which have proven useful to raise the bar against traditional software exploitation techniques, are completely ineffective against such attacks.”

* https://www.csail.mit.edu/event/software-exploitation-hardware-new-black
Exploitation of Bug-Free Software

- See Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector† by Cristiano Giuffrida
 - Uses Rowhammer to change bits in memory
 - Exploits de-duplication to obtain side information
 - Allows user to obtain gain arbitrary read/write access to memory

† https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7546546
Row-Hammer Attack

• De-duplication
 – OS saves space by creating pointers to one copy of a file
 – If one copy changed, workload increases and is visible
 – This provides one bit of side information!
 – Enough to violate security.
Review

• Security modeling including access control
• Federal security regulations and standards
• Software vulnerability assessments
• Microsoft’s Security Development Lifecycle
• Introduction to Threat Analysis
• Security can be violated even if code is perfect