
CS 173 Programming Languages Shriram K.

Scheme Tutorial Exercises
Fall 2003

Problem Set 3: Basic Higher-order functions

21-25. Rewrite the functions in exercises 11-15 using map, filter, foldl, or foldr.

26. Define the function compose-func, which consumes two functions of one argu-
ment, and returns the composition of these functions. For example:

((compose-func first rest) ’(a b c d))

� b

27. Define the function flatten. It consumes a list of sublists of numbers, and pro-
duces a list of all numbers in the sublists. For example:

(flatten ’((1 2) (3 4 5) (6)))

� ’(1 2 3 4 5 6)

Write two version of the function: one that uses foldr and one that doesn’t.

28. Use foldr to define the function bucket. It consumes a list of numbers, and returns
a list of sublists of adjacent equal numbers. For example:

(bucket ’(1 1 2 2 2 3 1 1 1 2 3 3))

� ’((1 1) (2 2 2) (3) (1 1 1) (2) (3 3))

29. Define the function tree-map. It consumes a function f over strings and a family-
tree t (See exercise 17), and produces a tree where f has been applied to each
name in t.

30. Use tree-map to define add-last-name. This function consumes a family tree and
a string, and produces a tree where the string has been appended to each name.

Hint: The Scheme function string-append takes two strings and returns a new
string representing their concatenation.


