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Today 

•  Network programming 
–  Programming Paradigms 
–  Programming libraries 

•  Final project 



Low-level Sockets 

•  Address Family AF_PACKET 
–  Socket type: SOCK_RAW 

•  See link-layer (Ethernet) headers. Can send broadcast on a 
LAN. Can get/create non-IP packets 

–  Socket type: SOCK_DGRAM 
•  See IP headers. Can get protocols other than TCP/UDP: 

ICMP, SCTP, DCCP, your own… 
•  Can cook your own IP packets 

–  Must have root privileges to play with these 



Building High Performance Servers 



e need for concurrency 

•  How to improve throughput? 
–  Decrease latency (throughput α 1/latency) 
–  Hard to do! 

•  Optimize code (this you should try!) 
•  Faster processor (no luck here, recently) 
•  Speed of light isn’t changing anytime soon… 
•  Disks have to deal with things like inertia! 

–  Do multiple things at once 
•  Concurrency 

–  Allows overlapping of computation and I/O 
–  Allows use of multiple cores, machines 



High-performance Servers 
Common Patterns 
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Figure 2: Multi-Process - In the MP model, each server
process handles one request at a time. Processes execute
the processing stages sequentially.
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Figure 3: Multi-Threaded - The MT model uses a single
address space with multiple concurrent threads of execu-
tion. Each thread handles a request.

Since each process has its own private address space,
no synchronization is necessary to handle the processing
of different HTTP requests2. However, it may be more
difficult to perform optimizations in this architecture that
rely on global information, such as a shared cache of
valid URLs. Figure 2 illustrates the MP architecture.
3.2 Multi-threaded

Multi-threaded (MT) servers, depicted in Figure 3,
employ multiple independent threads of control operat-
ing within a single shared address space. Each thread
performs all the steps associated with one HTTP re-
quest before accepting a new request, similar to the MP
model’s use of a process.

The primary difference between the MP and the MT
architecture, however, is that all threads can share global
variables. The use of a single shared address space lends
itself easily to optimizations that rely on shared state.
However, the threads must use some form of synchro-
nization to control access to the shared data.

The MT model requires that the operating system
provides support for kernel threads. That is, when one
thread blocks on an I/O operation, other runnable threads
within the same address space must remain eligible
for execution. Some operating systems (e.g., FreeBSD
2.2.6) provide only user-level thread libraries without
kernel support. Such systems cannot effectively support
MT servers.

2Synchronization is necessary inside the OS to accept incoming
connections, since the accept queue is shared

3.3 Single-process event-driven
The single-process event-driven (SPED) architecture

uses a single event-driven server process to perform
concurrent processing of multiple HTTP requests. The
server uses non-blocking systems calls to perform asyn-
chronous I/O operations. An operation like the BSD
UNIX select or the System V poll is used to check
for I/O operations that have completed. Figure 4 depicts
the SPED architecture.

A SPED server can be thought of as a state machine
that performs one basic step associated with the serving
of an HTTP request at a time, thus interleaving the pro-
cessing steps associated with many HTTP requests. In
each iteration, the server performs a select to check
for completed I/O events (new connection arrivals, com-
pleted file operations, client sockets that have received
data or have space in their send buffers.) When an I/O
event is ready, it completes the corresponding basic step
and initiates the next step associated with the HTTP re-
quest, if appropriate.

In principle, a SPED server is able to overlap the
CPU, disk and network operations associated with the
serving of many HTTP requests, in the context of a sin-
gle process and a single thread of control. As a result,
the overheads of context switching and thread synchro-
nization in the MP and MT architectures are avoided.
However, a problem associated with SPED servers is that
many current operating systems do not provide suitable
support for asynchronous disk operations.

In these operating systems, non-blocking read and
write operations work as expected on network sock-
ets and pipes, but may actually block when used on disk
files. As a result, supposedly non-blocking read opera-
tions on files may still block the caller while disk I/O is
in progress. Both operating systems used in our experi-
ments exhibit this behavior (FreeBSD 2.2.6 and Solaris
2.6). To the best of our knowledge, the same is true for
most versions of UNIX.

Many UNIX systems provide alternate APIs that im-
plement true asynchronous disk I/O, but these APIs are
generally not integrated with the select operation.
This makes it difficult or impossible to simultaneously
check for completion of network and disk I/O events in
an efficient manner. Moreover, operations such as open
and stat on file descriptors may still be blocking.

For these reasons, existing SPED servers do not use
these special asynchronous disk interfaces. As a result,
file read operations that do not hit in the file cache may
cause the main server thread to block, causing some loss
in concurrency and performance.
3.4 Asymmetric Multi-Process Event-Driven

The Asymmetric Multi-Process Event-Driven
(AMPED) architecture, illustrated in Figure 5, combines
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model’s use of a process.
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server uses non-blocking systems calls to perform asyn-
chronous I/O operations. An operation like the BSD
UNIX select or the System V poll is used to check
for I/O operations that have completed. Figure 4 depicts
the SPED architecture.
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that performs one basic step associated with the serving
of an HTTP request at a time, thus interleaving the pro-
cessing steps associated with many HTTP requests. In
each iteration, the server performs a select to check
for completed I/O events (new connection arrivals, com-
pleted file operations, client sockets that have received
data or have space in their send buffers.) When an I/O
event is ready, it completes the corresponding basic step
and initiates the next step associated with the HTTP re-
quest, if appropriate.

In principle, a SPED server is able to overlap the
CPU, disk and network operations associated with the
serving of many HTTP requests, in the context of a sin-
gle process and a single thread of control. As a result,
the overheads of context switching and thread synchro-
nization in the MP and MT architectures are avoided.
However, a problem associated with SPED servers is that
many current operating systems do not provide suitable
support for asynchronous disk operations.

In these operating systems, non-blocking read and
write operations work as expected on network sock-
ets and pipes, but may actually block when used on disk
files. As a result, supposedly non-blocking read opera-
tions on files may still block the caller while disk I/O is
in progress. Both operating systems used in our experi-
ments exhibit this behavior (FreeBSD 2.2.6 and Solaris
2.6). To the best of our knowledge, the same is true for
most versions of UNIX.

Many UNIX systems provide alternate APIs that im-
plement true asynchronous disk I/O, but these APIs are
generally not integrated with the select operation.
This makes it difficult or impossible to simultaneously
check for completion of network and disk I/O events in
an efficient manner. Moreover, operations such as open
and stat on file descriptors may still be blocking.

For these reasons, existing SPED servers do not use
these special asynchronous disk interfaces. As a result,
file read operations that do not hit in the file cache may
cause the main server thread to block, causing some loss
in concurrency and performance.
3.4 Asymmetric Multi-Process Event-Driven

The Asymmetric Multi-Process Event-Driven
(AMPED) architecture, illustrated in Figure 5, combines
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Figure 4: Single Process Event Driven - The SPED
model uses a single process to perform all client process-
ing and disk activity in an event-driven manner.

the event-driven approach of the SPED architecture
with multiple helper processes (or threads) that handle
blocking disk I/O operations. By default, the main
event-driven process handles all processing steps asso-
ciated with HTTP requests. When a disk operation is
necessary (e.g., because a file is requested that is not
likely to be in the main memory file cache), the main
server process instructs a helper via an inter-process
communication (IPC) channel (e.g., a pipe) to perform
the potentially blocking operation. Once the operation
completes, the helper returns a notification via IPC; the
main server process learns of this event like any other
I/O completion event via select.

The AMPED architecture strives to preserve the effi-
ciency of the SPED architecture on operations other than
disk reads, but avoids the performance problems suffered
by SPED due to inappropriate support for asynchronous
disk reads in many operating systems. AMPED achieves
this using only support that is widely available in modern
operating systems.

In a UNIX system, AMPED uses the standard non-
blocking read, write, and accept system calls on
sockets and pipes, and theselect system call to test for
I/O completion. The mmap operation is used to access
data from the filesystem and the mincore operation is
used to check if a file is in main memory.

Note that the helpers can be implemented either as
kernel threads within the main server process or as sep-
arate processes. Even when helpers are implemented as
separate processes, the use of mmap allows the helpers
to initiate the reading of a file from disk without intro-
ducing additional data copying. In this case, both the
main server process and the helper mmap a requested file.
The helper touches all the pages in its memory mapping.
Once finished, it notifies the main server process that it is
now safe to transmit the file without the risk of blocking.

4 Design comparison
In this section, we present a qualitative comparison

of the performance characteristics and possible optimiza-
tions in the various Web server architectures presented in
the previous section.
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Figure 5: Asymmetric Multi-Process Event Driven - The
AMPEDmodel uses a single process for event-driven re-
quest processing, but has other helper processes to han-
dle some disk operations.

4.1 Performance characteristics

Disk operations - The cost of handling disk activity
varies between the architectures based on what, if any,
circumstances cause all request processing to stop while
a disk operation is in progress. In the MP and MT mod-
els, only the process or thread that causes the disk ac-
tivity is blocked. In AMPED, the helper processes are
used to perform the blocking disk actions, so while they
are blocked, the server process is still available to han-
dle other requests. The extra cost in the AMPED model
is due to the inter-process communication between the
server and the helpers. In SPED, one process handles all
client interaction as well as disk activity, so all user-level
processing stops whenever any request requires disk ac-
tivity.

Memory effects - The server’s memory consumption
affects the space available for the filesystem cache.
The SPED architecture has small memory requirements,
since it has only one process and one stack. When
compared to SPED, the MT model incurs some addi-
tional memory consumption and kernel resources, pro-
portional to the number of threads employed (i.e., the
maximal number of concurrently served HTTP requests).
AMPED’s helper processes cause additional overhead,
but the helpers have small application-level memory de-
mands and a helper is needed only per concurrent disk
operation, not for each concurrently served HTTP re-
quest. The MP model incurs the cost of a separate pro-
cess per concurrently served HTTP request, which has
substantial memory and kernel overheads.

Disk utilization - The number of concurrent disk re-
quests that a server can generate affects whether it can
benefit from multiple disks and disk head scheduling.
The MP/MT models can cause one disk request per pro-
cess/thread, while the AMPED model can generate one
request per helper. In contrast, since all user-level pro-
cessing stops in the SPED architecture whenever it ac-
cesses the disk, it can only generate one disk request at a
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main server process learns of this event like any other
I/O completion event via select.
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disk reads, but avoids the performance problems suffered
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this using only support that is widely available in modern
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ducing additional data copying. In this case, both the
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The helper touches all the pages in its memory mapping.
Once finished, it notifies the main server process that it is
now safe to transmit the file without the risk of blocking.

4 Design comparison
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of the performance characteristics and possible optimiza-
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4.1 Performance characteristics

Disk operations - The cost of handling disk activity
varies between the architectures based on what, if any,
circumstances cause all request processing to stop while
a disk operation is in progress. In the MP and MT mod-
els, only the process or thread that causes the disk ac-
tivity is blocked. In AMPED, the helper processes are
used to perform the blocking disk actions, so while they
are blocked, the server process is still available to han-
dle other requests. The extra cost in the AMPED model
is due to the inter-process communication between the
server and the helpers. In SPED, one process handles all
client interaction as well as disk activity, so all user-level
processing stops whenever any request requires disk ac-
tivity.

Memory effects - The server’s memory consumption
affects the space available for the filesystem cache.
The SPED architecture has small memory requirements,
since it has only one process and one stack. When
compared to SPED, the MT model incurs some addi-
tional memory consumption and kernel resources, pro-
portional to the number of threads employed (i.e., the
maximal number of concurrently served HTTP requests).
AMPED’s helper processes cause additional overhead,
but the helpers have small application-level memory de-
mands and a helper is needed only per concurrent disk
operation, not for each concurrently served HTTP re-
quest. The MP model incurs the cost of a separate pro-
cess per concurrently served HTTP request, which has
substantial memory and kernel overheads.

Disk utilization - The number of concurrent disk re-
quests that a server can generate affects whether it can
benefit from multiple disks and disk head scheduling.
The MP/MT models can cause one disk request per pro-
cess/thread, while the AMPED model can generate one
request per helper. In contrast, since all user-level pro-
cessing stops in the SPED architecture whenever it ac-
cesses the disk, it can only generate one disk request at a
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reads 

•  Usual model for achieving concurrency 
•  Uniform abstraction for single and multiple cores 
•  Concurrency with locks/mutexes 

–  reads may block, hold locks for long time 

•  Easy to reason about 
–  Each thread has own stack 

•  Strong support from OS, libraries, debuggers 
•  Traditionally,  problems with more than a few 100 

threads 
–  Memory overhead, O(n) operations  



Performance, read-based server 
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Figure 2: Threaded server throughput degradation: This benchmark mea-
sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
file; all threads read from the same file, so the data is always in the buffer cache.
Threads are pre-allocated in the server to eliminate thread startup overhead
from the measurements, and tasks are generated internally to negate network
effects. The server is implemented in C and is running on a 4-way 500 MHz
Pentium III with 2 GB of memory under Linux 2.2.14. As the number of con-
current tasks increases, throughput increases until the number of threads grows
large, after which throughput degrades substantially. Response time becomes
unbounded as task queue lengths increase; for comparison, we have shown the
ideal linear response time curve (note the log scale on the x axis).

identify internal performance bottlenecks in order to perform tuning
and load conditioning. Consider a simple threaded Web server in which
some requests are inexpensive to process (e.g., cached static pages) and
others are expensive (e.g., large pages not in the cache). With many
concurrent requests, it is likely that the expensive requests could be the
source of a performance bottleneck, for which it is desirable to perform
load shedding. However, the server is unable to inspect the internal
request stream to implement such a policy; all it knows is that the thread
pool is saturated, and must arbitrarily reject work without knowledge of
the source of the bottleneck.
Resource containers [7] and the concept of paths from the Scout op-

erating system [41, 49] are two techniques that can be used to bound
the resource usage of tasks in a server. These mechanisms apply ver-
tical resource management to a set of software modules, allowing the
resources for an entire data flow through the system to be managed as a
unit. In the case of the bottleneck described above, limiting the resource
usage of a given request would avoid degradation due to cache misses,
but allow cache hits to proceed unabated.

2.3 Event-driven concurrency
The scalability limits of threads have led many developers to eschew
them almost entirely and employ an event-driven approach to manag-
ing concurrency. In this approach, shown in Figure 3, a server consists
of a small number of threads (typically one per CPU) that loop continu-
ously, processing events of different types from a queue. Events may be
generated by the operating system or internally by the application, and
generally correspond to network and disk I/O readiness and completion
notifications, timers, or other application-specific events. The event-
driven approach implements the processing of each task as a finite state
machine, where transitions between states in the FSM are triggered by
events. In this way the server maintains its own continuation state for
each task rather than relying upon a thread context.
The event-driven design is used by a number of systems, including
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Figure 3: Event-driven server design: This figure shows the flow of events
through an event-driven server. The main thread processes incoming events from
the network, disk, and other sources, and uses these to drive the execution of
many finite state machines. Each FSM represents a single request or flow of
execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

the Flash [44], thttpd [4], Zeus [63], and JAWS [24] Web servers, and
the Harvest [12] Web cache. In Flash, each component of the server
responds to particular types of events, such as socket connections or
filesystem accesses. The main server process is responsible for contin-
ually dispatching events to each of these components, which are imple-
mented as library calls. Because certain I/O operations (in this case,
filesystem access) do not have asynchronous interfaces, the main server
process handles these events by dispatching them to helper processes
via IPC. Helper processes issue (blocking) I/O requests and return an
event to the main process upon completion. Harvest’s structure is very
similar: it is single-threaded and event-driven, with the exception of the
FTP protocol, which is implemented by a separate process.
The tradeoffs between threaded and event-driven concurrency mod-

els have been studied extensively in the JAWS Web server [23, 24].
JAWS provides a framework for Web server construction allowing the
concurrency model, protocol processing code, cached filesystem, and
other components to be customized. Like SEDA, JAWS emphasizes
the importance of adaptivity in service design, by facilitating both static
and dynamic adaptations in the service framework. To our knowledge,
JAWS has only been evaluated under light loads (less than 50 concur-
rent clients) and has not addressed the use of adaptivity for conditioning
under heavy load.
Event-driven systems tend to be robust to load, with little degrada-

tion in throughput as offered load increases beyond saturation. Figure 4
shows the throughput achieved with an event-driven implementation of
the service from Figure 2. As the number of tasks increases, the server
throughput increases until the pipeline fills and the bottleneck (the CPU
in this case) becomes saturated. If the number of tasks in the pipeline is
increased further, excess tasks are absorbed in the server’s event queue.
The throughput remains constant across a huge range in load, with the
latency of each task increasing linearly.
An important limitation of this model is that it assumes that event-

handling threads do not block, and for this reason nonblocking I/O
mechanisms must be employed. Although much prior work has in-
vestigated scalable I/O primitives [8, 9, 33, 46, 48], event-processing
threads can block regardless of the I/O mechanisms used, due to inter-
rupts, page faults, or garbage collection.
Event-driven design raises a number of additional challenges for the

application developer. Scheduling and ordering of events is probably
the most important concern: the application is responsible for deciding
when to process each incoming event and in what order to process the
FSMs for multiple flows. In order to balance fairness with low response
time, the application must carefully multiplex the execution of multiple

From	  Welsh,	  et	  al.,	  SOSP	  2001	  “SEDA:	  An	  Architecture	  for	  Well-‐CondiBoned,	  Scalable	  
Internet	  Services	  



Events 

•  Small number of threads, one per CPU 
•  reads do one thing: 

while(1) { 
get event from queue 
Handle event to completion 

} 

•  Events are network, I/O readiness and 
completion, timers, signals 
–  Remember select()? 

•  Assume event handlers never block 
–  Helper threads handle blocking calls, like disk I/O 



Events 

•  Many works in the early 2000’s claimed that 
events are needed for high performance servers 
–  E.g., Flash, thttpd, Zeus, JAWS web servers 

•  Indeed, many of today’s fastest servers are 
event-driven 
–  E.g., OKCupid, lighttpd, nginx, tornado 

Ligh%pd:	  “Its	  event-‐driven	  architecture	  is	  op7mized	  for	  a	  large	  number	  of	  
parallel	  connec7ons”	  

Tornado:	  “Because	  it	  is	  non-‐blo
cking	  and	  uses	  epoll,	  it	  can	  han

dle	  thousands	  of	  

simultaneous	  standing	  connec7on
s”	  
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Figure 4: Event-driven server throughput: This benchmark measures an
event-driven version of the server from Figure 2. In this case, the server uses
a single thread to process tasks, where each task reads 8 KB from a single disk
file. Although the filesystem interface provided by the operating system used
here (Linux 2.2.14) is blocking, because the disk data is always in the cache, this
benchmark estimates the best possible performance from a nonblocking disk I/O
layer. As the figure shows, throughput remains constant as the load is increased
to a very large number of tasks (note the change in the horizontal axis scale from
Figure 2), and response time is linear (note the log scale on the x axis).

FSMs. The choice of an event scheduling algorithm is often tailored
to the specific application, and introduction of new functionality may
require the algorithm to be redesigned. Also, modularity is difficult
to achieve, as the code implementing each state must be trusted not to
block or consume a large number of resources that can stall the event-
handling thread.

2.4 Structured event queues
Several variants on the standard event-driven design have been pro-
posed to counter the problems outlined above. A common aspect of
these designs is to structure an event-driven application using a set of
event queues to improve code modularity and simplify application de-
sign.
The Click modular packet router [40] is one such example. In Click,

packet processing stages are implemented by separate code modules
with their own private state. Click is optimized to improve per-packet
latency through the router, allowing a single thread to call directly
through multiple packet-processing stages. This design is targeted at
a specific application (routing) and a single thread services all event
queues. Click makes the assumption that modules have bounded pro-
cessing times, leading to a relatively static resource-management poli-
cies. Qie et al. [47] also describe techniques for scheduling and load
conditioning in a software-based router; like SEDA, their design makes
use of controllers to adjust runtime parameters dynamically based on
load.
Gribble’s Distributed Data Structures (DDS) [20] layer also makes

use of a structured event-processing framework. In DDS, storage
servers emulate asynchronous network and disk I/O interfaces by mak-
ing use of fixed-size thread pools, and software components are com-
posed using either explicit event queues or implicit upcalls. Work
Crews [56] and the TSS/360 queue scanner [35] are other examples of
systems that make use of structured event queues and limited numbers
of threads to manage concurrency. In each of these systems, the use
of an event queue decouples the execution of two components, which
improves modularity and robustness.
StagedServer [31] is another system that makes use of modules com-

municating using explicit event queues. In this case, the goal is to
maximize processor cache locality by carefully scheduling threads and
events within each module. By aggregating the execution of multiple
similar events within a queue, locality is enhanced, leading to greater
performance.
Lauer and Needham’s classic paper [32] discusses the merits of pro-

cesses communicating via messages and contrasts this approach to that
of “procedures,” closely related to the threaded model described above.
SEDA can be seen as an instance of the message-oriented model dis-
cussed there. The authors claim that the message-based and procedure-
based models are duals of each other, and that any program imple-
mented in one model can just as efficiently be implemented in the other.
While we agree with this basic sentiment, this argument overlooks the
complexity of building scalable general-purpose multithreading, as well
as the inherent difficulties of adapting to load in a thread-based model,
without an explicit request queue.

3 The Staged Event-Driven Architecture
In this section we propose a new software architecture, the staged event-
driven architecture (SEDA), which is designed to enable high concur-
rency, load conditioning, and ease of engineering for Internet services.
SEDA decomposes an application into a network of stages separated
by event queues and introduces the notion of dynamic resource con-
trollers to allow applications to adjust dynamically to changing load.
An overview of the SEDA approach to service design is shown in Fig-
ure 5.

3.1 Goals
The primary goals for SEDA are as follows:

Support massive concurrency: To avoid performance degradation
due to threads, SEDA makes use of event-driven execution wherever
possible. This also requires that the system provide efficient and scal-
able I/O primitives.

Simplify the construction of well-conditioned services: To reduce
the complexity of building Internet services, SEDA shields application
programmers from many of the details of scheduling and resource man-
agement. The design also supports modular construction of these appli-
cations, and provides support for debugging and performance profiling.

Enable introspection: Applications should be able to analyze the re-
quest stream to adapt behavior to changing load conditions. For exam-
ple, the system should be able to prioritize and filter requests to support
degraded service under heavy load.

Support self-tuning resource management: Rather than mandate
a priori knowledge of application resource requirements and client load
characteristics, the system should adjust its resource management pa-
rameters dynamically to meet performance targets. For example, the
number of threads allocated to a stage can be determined automatically
based on perceived concurrency demands, rather than hard-coded by
the programmer or administrator.

3.2 Stages as robust building blocks
The fundamental unit of processing within SEDA is the stage. A stage
is a self-contained application component consisting of an event han-
dler, an incoming event queue, and a thread pool, as depicted in Fig-
ure 6. Each stage is managed by a controller that affects scheduling
and thread allocation, as described below. Stage threads operate by
pulling a batch of events off of the incoming event queue and invok-
ing the application-supplied event handler. The event handler processes
each batch of events, and dispatches zero or more events by enqueuing
them on the event queues of other stages.



Flash Web Server 

•  Pai, Drushel, Zwaenepoel, 1999 
•  In"uential work 
•  Compared four architectures 

–  Multi-process servers 
–  Multi-threaded servers 
–  Single-process event-driven 
–  Asymmetric Multi-process event driven 

•  AMPED was the fastest  



Events (cont) 

•  Highly efficient code 
–  Little or no switching overhead 
–  Easy concurrency control 

•  Common complaint: hard to program and 
reason about 
–  For people and tools 

•  Main reason: stack ripping 



Events criticism: control "ow 

Accept	  
Conn.	  

Write	  
Response	  

Read	  
File	  

Read	  
Request	  

Pin	  
Cache	  

Web	  Server	  

Exit	  

Threads Events 
thread_main(int sock) { 
    struct session s; 
    accept_conn(sock, &s);     
    read_request(&s); 
    pin_cache(&s); 
    write_response(&s); 
    unpin(&s); 
} 

pin_cache(struct session *s) { 
    pin(&s); 
    if( !in_cache(&s) ) 
        read_file(&s); 
} 

CacheHandler(struct session *s) { 
    pin(s); 
    if( !in_cache(s) )  ReadFileHandler.enqueue(s); 
    else                    ResponseHandler.enqueue(s); 
} 
RequestHandler(struct session *s) { 
    …; CacheHandler.enqueue(s); 
} 
. . .  
ExitHandlerr(struct session *s) { 
    …;  unpin(&s);  free_session(s);   
} 
AcceptHandler(event e) { 
    struct session *s = new_session(e); 
    RequestHandler.enqueue(s); } 

•  Events obscure control "ow 
–  For programmers and  tools 



Events criticism: Exceptions 
•  Exceptions complicate control "ow 

–  Harder to understand program #ow 
–  Cause bugs in cleanup code Accept	  

Conn.	  

Write	  
Response	  

Read	  
File	  

Read	  
Request	  

Pin	  
Cache	  

Web	  Server	  

Exit	  

Threads Events 
thread_main(int sock) { 
    struct session s; 
    accept_conn(sock, &s);     
    if( !read_request(&s) ) 
        return; 
    pin_cache(&s); 
    write_response(&s); 
    unpin(&s); 
} 

pin_cache(struct session *s) { 
    pin(&s); 
    if( !in_cache(&s) ) 
        read_file(&s); 
} 

CacheHandler(struct session *s) { 
    pin(s); 
    if( !in_cache(s) )  ReadFileHandler.enqueue(s); 
    else                    ResponseHandler.enqueue(s); 
} 
RequestHandler(struct session *s) { 
    …; if( error ) return;  CacheHandler.enqueue(s); 
} 
. . .  
ExitHandlerr(struct session *s) { 
    …;  unpin(&s);  free_session(s);   
} 
AcceptHandler(event e) { 
    struct session *s = new_session(e); 
    RequestHandler.enqueue(s); } 



Events criticism: State Management 

Threads Events 
thread_main(int sock) { 
    struct session s; 
    accept_conn(sock, &s);     
    if( !read_request(&s) ) 
        return; 
    pin_cache(&s); 
    write_response(&s); 
    unpin(&s); 
} 

pin_cache(struct session *s) { 
    pin(&s); 
    if( !in_cache(&s) ) 
        read_file(&s); 
} 

CacheHandler(struct session *s) { 
    pin(s); 
    if( !in_cache(s) )  ReadFileHandler.enqueue(s); 
    else                    ResponseHandler.enqueue(s); 
} 
RequestHandler(struct session *s) { 
    …; if( error ) return;  CacheHandler.enqueue(s); 
} 
. . .  
ExitHandlerr(struct session *s) { 
    …;  unpin(&s);  free_session(s);   
} 
AcceptHandler(event e) { 
    struct session *s = new_session(e); 
    RequestHandler.enqueue(s); } 

Accept	  
Conn.	  

Write	  
Response	  

Read	  
File	  

Read	  
Request	  

Pin	  
Cache	  

Web	  Server	  

Exit	  

•  Events require manual state management 
•  Hard to know when to free 

–  Use GC or risk bugs 



Usual Arguments 

•  Events: 
–  Hard to program (stack ripping) 
–  Easy to deal with concurrency (cooperative task management) 

•  Shared state is more explicit 
–  High performance (low overhead, no switching, no blocking) 

•  reads 
–  Easy to reason about #ow, state (automatic stack management) 
–  Hard to deal with concurrency (preemptive task management) 

•  Everything is shared 

–  Lower performance (thread switching cost, memory overhead) 



Capriccio (2003) 

•  Showed threads can 
perform as well as 
events 
–  Avoid O(n) operations 
–  Cooperative lightweight 

user-level threads 
•  (still one kernel thread per 

core) 
–  Asynchronous I/O 

•  Handled by the library 
–  Variable-length stacks 
–  e thread library runs an 

event-based system 
underneath! 



Arti$cial Dichotomy! 

•  Old debate! Lauer and Needham, 78 
–  Duality between process-based and message-passing 
–  Updated by the Capriccio folks, 2003 

•  Performance should be similar 
–  No inherent reason for threads to be worse 
–  Implementation is key 

Threads Events 
  Monitors 
  Exported functions 
  Call/return and fork/join 
  Wait on condition variable 

  Event handler & queue 
  Events accepted  
  Send message / await reply 
  Wait for new messages 



Arti$cial Dichotomy  

•  reads 
–  Preemptive multitasking 
–  Automatic stack management 

•  Events 
–  Cooperative multitasking 
–  Manual stack management (stack ripping) 

•  Adya, 2002: you can choose your features! 
–  ey show that you can have cooperative multitasking 

with automatic stack managment 

Adya,	  A.	  et	  al.,	  2002.	  “CooperaBve	  Task	  Management	  without	  Manual	  Stack	  
Managementor,	  Event-‐driven	  Programming	  is	  Not	  the	  Opposite	  of	  Threaded	  
Programming	  



reads vs. Events 

•  Today you still have to mostly choose either 
style (complete packages) 
–  read-based servers very dependent on OS, 

threading libraries 
•  Some promising directions! 

–  TAME allows you to write sequential C++ code (with 
some annotations), converts it into event-based 

–  Scala (oo/functional language that runs on the JVM) 
makes threaded and event-based code look almost 
identical 



Popular Event-Based Frameworks 

•  libevent 
•  libasync (SFS, SFS-light) 
•  Javascript 

–  All browser code 
–  Node.js at the server side 

•  GUI programming 



Some available libraries 

With	  material	  from	  Igor	  Ganichev	  



Python 

•  Rich standard library 
–  url/http/p/pop/imap/smtp/telnet 
–  SocketServer, HTTPServer, DocXMLRPCServer, etc 

•  Twisted 
–  Very popular 
–  Has a lot of stuff, but quite modular 
–  Event-driven, many design patterns. Steep learning 

curve… 
–  Well maintained and documented 



Java 

•  Mature RPC library: RMI 
•  River: RMI + service discovery, mobile code 
•  Java.NIO 

–  High-level wrapping of OS primitives 
•  Select -> Selector . Socket -> Channel 

–  Good, efficient buffer abstraction 
•  Jetty 

–  Extensible, event-driven framework 
–  High-performance 
–  Avoid unnecessary copies 
–  Other side doesn’t have to be in Java 





C 

•  Sockets! 
•  Direct access to what the OS provides 
•  Libevent 

–  Simple, somewhat portable abstraction of select() with 
uniform access to events: I/O, timers, signals 

–  Supports /dev/poll, kqueue(2), event ports, select(2), 
poll(2) and epoll(4). 

–  Well maintained, actively developed 
–  Behind many very high-performance servers 

•  Memcached 



C++ 

•  Boost.ASIO 
–  Clean, lightweight, portable abstraction of sockets and 

other features 
–  Not a lot of higher-level protocol support 
–  Has support for both synchronous and asynchronous 

operations, threads (from other parts of Boost) 
•  Others: ACE, POCO 



ICE 

•  Cross-language middleware + framework 
–  ink twisted + protocol buffers 

•  Open source but owned by a company 
•  SSL, sync/async, threads, resource allocation, 

$rewall traversal, event distribution, fault 
tolerance 

•  Supports many languages 
–  C++, Java, .NET-languages (such as C# or Visual 

Basic), Objective-C, Python, PHP, and Ruby 



Other “cool” approaches 

•  Erlang, Scala, Objective C 
–  Support the Actor model: program is a bunch of actors 

sending messages to each other 
–  Naturally extends to multi-core and multiple 

machines, as sending messages is the same 
•  Go 

–  Built for concurrency, uses ‘Goroutines’, no shared 
state 

–  “Don’t share memory to communicate, communicate 
to share memory” 



Node.js 

•  Javascript server framework 
•  Leverages highly efficient Chrome V8 Javascript JIT 

runtime 
•  Completely event-based 
•  Many high-level libraries 

var http = require('http');!
http.createServer(function (req, res) {!
  res.writeHead(200, {'Content-Type': 'text/plain'});!
  res.end('Hello World\n');!
}).listen(8124, "127.0.0.1");!
console.log('Server running at http://127.0.0.1:8124/');!



Final Assignment 



Final Project 

•  IP Over DNS 
•  Problem: suppose you connect to a network that 

only gives you (very) limited access:  
recursive DNS queries through local DNS server 

•  Can you use this to route any IP traffic? 

Disclaimer: this is provided as an educational exercise so you 
can learn how tunnels, NATs, and virtual interfaces work. 
You should not use these techniques to gain access to 
unauthorized network resources. 



IP Over DNS 

•  DNS queries can carry information: domain 
name is arbitrary string 
–  Maximum 255 characters 
–  Name is sequence of labels, each label max 63 

characters 
–  Labels preceded by single byte length 
–  Terminated by a 0-length label (0 byte) 



IP over DNS 
•  DNS Responses can carry arbitrary 

information 
–  In TXT records 
–  Maximum length? 

•  Maximum UDP DNS packet is 512 bytes 
•  Other restrictions may be imposed by DNS servers, e.g. 

maximum 255 bytes per TXT record, maximum number of 
TXT records per packet…  Should test with your recursive 
resolver. 

–  Should you repeat the query? 
•  Not required by the standard (RFC1035) 
•  Common practice (e.g. Bind) is to reject the response if it 

doesn’t match the query, but again, YMMV. 



Talk about possible solution 



Some questions 

•  How to encode data? 
•  Virtual interfaces: TUN or TAP? 
•  Client: setting up routes 
•  MTU 
•  Server: what to do with the packets you receive? 

–  Linux has support for NATs 
•  Asymmetries 

–  Only client can initiate requests 
–  What if server has many ‘responses’ to send? 



Some Resources 

•  TUN/TAP Interfaces 
–  VTUN 

•  DNS Packets 
–  You can build your own (RFC1035) 
–  ere are libraries to help (e.g. FireDNS) 

•  Base64 Encoding 
–  http://www.ietf.org/rfc/rfc3548.txt 

•  Linux Routing and NAT 
–  Route con'guration and basic NAT: iproute2 
–  More sophisticated NAT: iptables 
–  BE CAREFUL NOT TO LOSE CONNECTIVITY WHEN 

YOU CHANGE ROUTES! 


