CSCI-1680
Network Programming II

Rodrigo Fonseca

Today

* Network programming

— Programming Paradigms

— Programming libraries

* Final project

Low-level Sockets

* Address Family AF_ PACKET
— Socket type: SOCK_RAW

* See link-layer (Ethernet) headers. Can send broadcast on a
LAN. Can get/create non-IP packets

— Socket type: SOCK_DGRAM

 See IP headers. Can get protocols other than TCP/UDP:
ICMP, SCTP, DCCP, your own...

 Can cook your own IP packets

— Must have root privileges to play with these

Building High Performance Servers

The need for concurrency

* How to improve throughput?

— Decrease latency (throughput a 1/latency)

— Hard to do!
* Optimize code (this you should try!)

* Faster processor (no luck here, recently)
* Speed of light isn’t changing anytime soon...
 Disks have to deal with things like inertia!

— Do multiple things at once
* Concurrency

— Allows overlapping of computation and I/O

— Allows use of multiple cores, machines

High-performance Servers

Common Patterns

Multiple processes :
Process 1 plep MUItIple Threads
|Accept| _ I'Read | __ | Find1 __ISend ~ 1 Read File |
IConn_| ™1 Request | ™ | File | ™ IHeader | Send Data_ h
—slAccept | |—>| Read Iil Find I—>|Send ~ T"Read File
° iConn_| =l | Request | —| File —»IL—IeEdE' I _, Send Data_
Process N .

|Accept] __ I'Read |__|Find1__ISend ~ 1 Read File |
IConn_| ™1 Request | ™ | File | ™ IHeader | Send Data_ h

Single Process Event Driven with Helpers

Single Process Event Driven Recept], A Read | |Tinal SpocndHeader |
[Conn b | Request | Flle _IS{;I?(;]_]I;;;_ _
Send Header —_ —_————_— e e e

| Accept | IR | Find 1
pt Read Fmd
Read File Event Dlspatcher
gggn_b RequeSt Flle _Se_nd_Dita_ _b —— ——— ——— ——— e ———— ——— —_— _l
[~——— N A e =
| Event Dlspatcher <_ - Z‘ <_ - ; <_ - Z‘

B o —

| Helper1 | Helper2 e oo | Helperk

Figures from Pai, et al., 1999 “Flash: An efficient and portable Web server”

Threads

Usual model for achieving concurrency
Uniform abstraction for single and multiple cores

Concurrency with locks/mutexes
— Threads may block, hold locks for long time

Easy to reason about
— Each thread has own stack

Strong support from OS, libraries, debuggers

Traditionally, problems with more than a few 100
threads

— Memory overhead, O(n) operations

G

2
=
G‘

’l

\ENE§

(ENB

Performance, Thread-based server

30000

25000

20000

15000

10000

Throughput, tasks/sec

From Welsh, et al., SOSP 2001 “SEDA: An Architecture for Well-Conditioned, Scalable

Internet Services

Throughlput —
Latency wnfFen
Linear (ideal) latency =l

Number of threads

Latency, msec

Events

* Small number of threads, one per CPU

* Threads do one thing:
while(1) {
get event from queue

Handle event to completion

J

* Events are network, I/O readiness and
completion, timers, signals

— Remember select()?

 Assume event handlers never block
— Helper threads handle blocking calls, like disk I/0O

Events

* Many works in the early 2000’s claimed that
events are needed for high performance servers
— E.g., Flash, thttpd, Zeus, JAWS web servers

* Indeed, many of today’s fastest servers are
event-driven

— E.g., OKCupid, lighttpd, nginx, tornado

Lighttpd: “Its event-driven architecture is optimized for a large number of
parallel connections”

poll, i ands o
Tornado: “Because it is non-blocking and uses € oll. it can handle thous f

o V24
simultaneous standing connections

Performance, Event-Driven Web server

' ' L — ———— 40000
Throughput s
35000 e Latency IlIE---
Linear (ideal) latency '+l
30000
30000
O
& 25000
% S
S (/2]
= 20000 €
3 20000 <>J~
e C
S 2
‘3” 15000 :
c
|_
10000 10000
5000
"
0 B-E-E--E--E-E-E--E- - - 0

1 32 1024 32768 1048576
Number of tasks in pipeline

= From Welsh, et al., SOSP 2001 “SEDA: An Architecture for Well-Conditioned, Scalable
T Internet Services

\elEld

(ENB

Flash Web Server

* Pai, Drushel, Zwaenepoel, 1999
e Influential work

* Compared four architectures
— Multi-process servers
— Multi-threaded servers
— Single-process event-driven

— Asymmetric Multi-process event driven

AMPED was the fastest

Events (cont)

* Highly efficient code
— Little or no switching overhead

— Easy concurrency control

* Common complaint: hard to program and
reason about

— For people and tools

* Main reason: stack ripping

Events criticism: control flow

 Events obscure control flow Web Server

— For programmers and tools

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s);)2
write_response(&s); RequestHandler(struct session *s) {
unpin(&s); ..., CacheHandler.enqueue(s);
by by
pin_cache(struct session *s) { ExitHandlerr(struct session *s) {
pin(&s); ...; unpin(&s); free_session(s);
if(lin_cache(&s)) }
read_file(&s); AcceptHandler(event e) {
)2 struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Events criticism: Exceptions

* Exceptions complicate control flow
— Harder to understand program flow
— Cause bugs in cleanup code

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
if('read_request(&s)) else ResponseHandler.enqueue(s);
return; }
pin_cache(&s); RequestHandler(struct session *s) {
write_response(&s); ...; if(error) return; CacheHandler.enqueue(s);
unpin(&s); }
} .
ExitHandlerr(struct session *s) {
pin_cache(struct session *s) { ...; unpin(&s); free_session(s);
pin(&s); by
if(lin_cache(&s)) AcceptHandler(event e) {
read_file(&s); struct session *s = new_session(e);
> RequestHandler.enqueue(s); }

Web Server

Events criticism: State Management

* Events require manual state management
* Hard to know when to free

— Use GC or risk bugs
Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
if('read_request(&s)) else ResponseHandler.enqueue(s);

return;
pin_cache(&s);
write_response(&s);
unpin(&s);
by

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

b
RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

b

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

9&%}
\ -

(ENB
\=] 2

Web Server

Usual Arguments

* Events:
— Hard to program (stack ripping)

— Easy to deal with concurrency (cooperative task management)

« Shared state is more explicit

— High performance (low overhead, no switching, no blocking)

e Threads

— Easy to reason about flow, state (automatic stack management)

— Hard to deal with concurrency (preemptive task management)
* Everything is shared

— Lower performance (thread switching cost, memory overhead)

Capriccio (2003)

 Showed threads can
perform as well as

events
11000() remg—p—pge—p———p——y—y———y—————
— Avoid O(n) operations 100000 NV 2\
< 90000
— COOperatlve hghtwelght § 80000 |
user-level threads A 70000 N
& 60000 |
* (still one kernel thread per g 50000 b Event-Based Server
COI'G) & 40000
30000
— Asynchronous I/O N S

N PP RSP EPEPEY S
1 10 100 1000 10000 100000 le+0¢

* Handled by the library
— Variable-length stacks
— 'The thread library runs an

event-based system
underneath!

Concurrent Tasks

Artificial Dichotomy!

 Old debate! Lauer and Needham, 78

— Duality between process-based and message-passing
— Updated by the Capriccio folks, 2003

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply
= Wait on condition variable |« Wait for new messages

 Performance should be similar
— No inherent reason for threads to be worse

— Implementation is key

Artificial Dichotomy

 Threads

— Preemptive multitasking
— Automatic stack management
* Events

— Cooperative multitasking
— Manual stack management (stack ripping)

* Adya, 2002: you can choose your features!

— They show that you can have cooperative multitasking
with automatic stack managment

Adya, A. et al., 2002. “Cooperative Task Management without Manual Stack

Managementor, Event-driven Programming is Not the Opposite of Threaded
] B Programming

Threads vs. Events

* Today you still have to mostly choose either
style (complete packages)
— 'Thread-based servers very dependent on OS,
threading libraries
* Some promising directions!
— TAME allows you to write sequential C++ code (with
some annotations), converts it into event-based

— Scala (oo/functional language that runs on the JVM)
makes threaded and event-based code look almost
identical

Popular Event-Based Frameworks

* libevent
* libasync (SFS, SFS-light)

* Javascript
— All browser code

— Node.js at the server side

* GUI programming

Some available libraries

With material from Igor Ganichev

Python

* Rich standard library

— url/http/ftp/pop/imap/smtp/telnet
— SocketServer, HT'TPServer, DocXMLRPCServer, etc

 Twisted
— Very popular
— Has a lot of stuff, but quite modular

— Event-driven, many design patterns. Steep learning
curve...

— Well maintained and documented

Java

* Mature RPC library: RMI
* River: RMI + service discovery, mobile code

* Java.NIO
— High-level wrapping of OS primitives
» Select -> Selector . Socket -> Channel
— Good, efficient buffer abstraction

* Jetty
— Extensible, event-driven framework
— High-performance
— Avoid unnecessary copies
— Other side doesn’t have to be in Java

Transport Services Protocol Support

Socket & HTTP & Google
Datagram WebSocket S Protobuf
HTTP Tunnel Zibigzn Lagpe e RTSP
Compression Transfer

Legacy Text - Binary Protocols

YA Sipe with Unit Testability

Extensible Event Model

Universal Communication API

Core

Zero-Copy-Capable Rich Byte Buffer

3109

* Sockets!
* Direct access to what the OS provides

 Libevent

— Simple, somewhat portable abstraction of select() with
uniform access to events: I/O, timers, signals

— Supports /dev/poll, kqueue(2), event ports, select(2),
poll(2) and epoll(4).

— Well maintained, actively developed

— Behind many very high-performance servers

e Memcached

C++

e Boost.ASIO

— Clean, lightweight, portable abstraction of sockets and
other features

— Not a lot of higher-level protocol support

— Has support for both synchronous and asynchronous
operations, threads (from other parts of Boost)

 QOthers: ACE, POCO

ICE

Cross-language middleware + framework
— 'Think twisted + protocol buffers

Open source but owned by a company

SSL, sync/async, threads, resource allocation,
firewall traversal, event distribution, fault
tolerance

Supports many languages

— C++, Java, .NET-languages (such as C# or Visual
Basic), Objective-C, Python, PHP, and Ruby

Other “cool” approaches

* Erlang, Scala, Objective C

— Support the Actor model: program is a bunch of actors
sending messages to each other

— Naturally extends to multi-core and multiple
machines, as sending messages is the same

e Go

— Built for concurrency, uses ‘Goroutines, no shared
state

— “Don’t share memory to communicate, communicate
to share memory”

Node.js

* Javascript server framework

* Leverages highly efficient Chrome V8 Javascript JIT
runtime

* Completely event-based
* Many high-level libraries

var http = require('http');

http.createServer (function (req, res) {
res.writeHead (200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(8124, "127.0.0.1");

console.log('Server running at http://127.0.0.1:8124/"');

Final Assignment

Final Project

e IP Over DNS

* Problem: suppose you connect to a network that
only gives you (very) limited access:

recursive DNS queries through local DNS server

* Can you use this to route any IP traffic?

Disclaimer: this is provided as an educational exercise so you
can learn how tunnels, NATs, and virtual interfaces work.
You should not use these techniques to gain access to
unauthorized network resources.

IP Over DNS

* DNS queries can carry information: domain
name is arbitrary string
— Maximum 255 characters

— Name is sequence of labels, each label max 63
characters

— Labels preceded by single byte length
— Terminated by a 0-length label (0 byte)

IP over DNS

* DNS Responses can carry arbitrary
information
— In TXT records

— Maximum length?
* Maximum UDP DNS packet is 512 bytes

* Other restrictions may be imposed by DNS servers, e.g.
maximum 255 bytes per TXT record, maximum number of
TXT records per packet... Should test with your recursive
resolver.

— Should you repeat the query?
* Not required by the standard (RFC1035)

* Common practice (e.g. Bind) is to reject the response if it
doesn’t match the query, but again, YMMV.

Talk about possible solution

Some questions

e How to encode data?
e Virtual interfaces: TUN or TAP?
* Client: setting up routes

 MTU

* Server: what to do with the packets you receive?
— Linux has support for NATs
* Asymmetries

— Only client can initiate requests
— What if server has many ‘responses’ to send?

Some Resources

TUN/TAP Interfaces
— VTUN

DNS Packets
— You can build your own (RFC1035)
— There are libraries to help (e.g. FireDNS)

Base64 Encoding
— http://www.ietf.org/rfc/rfc3548.txt

* Linux Routing and NAT
— Route configuration and basic NAT: iproute2
— More sophisticated NAT: iptables

— BE CAREFUL NOT TO LOSE CONNECTIVITY WHEN
YOU CHANGE ROUTES!

