
538 7 End-to-End Data

At the next level are flat types—structures and arrays. While flat types might

at first not appear to complicate argument marshalling, the reality is that they do.

The problem is that the compilers used to compile application programs sometimes

insert padding between the fields that make up the structure so as to align these fields

on word boundaries. The marshalling system typically packs structures so that they

contain no padding.

At the highest level, the marshalling system might have to deal with complex

types—those types that are built using pointers. That is, the data structure that one

program wants to send to another might not be contained in a single structure, but

might instead involve pointers from one structure to another. A tree is a good ex-

ample of a complex type that involves pointers. Clearly, the data encoder must pre-

pare the data structure for transmission over the network because pointers are imple-

mented by memory addresses, and just because a structure lives at a certain memory

address on one machine does not mean it will live at the same address on another

machine. In other words, the marshalling system must serialize (flatten) complex data

structures.

! In summary, depending on how complicated the type system is, the task of argu-

ment marshalling usually involves converting the base types, packing the structures,

and linearizing the complex data structures, all to form a contiguous message that can

be transmitted over the network. Figure 7.3 illustrates this task.

Conversion Strategy

Once the type system is established, the next issue is what conversion strategy the

argument marshaller will use. There are two general options: canonical intermediate

form and receiver-makes-right. We consider each, in turn.

Argument marshaller

Application data structure

Figure 7.3 Argument marshalling: converting, packing, and linearizing.


