CSCI-1680
Network Layer:
Intra-domain Routing

Rodrigo Fonseca

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti

Administrivia

* Clarification on grading

— Must pass each of the 3 components

* assignments, homeworks, exams

Today

* Intra-Domain Routing

* Next class: Inter-Domain Routing

Routing

* Routing is the process of updating forwarding
tables

— Routers exchange messages about routers or networks
they can reach

— Goal: find optimal route for every destination

— ... or maybe a good route, or any route (depending on
scale)

* Challenges
— Dynamic topology
— Decentralized
— Scale

Scaling Issues

* Every router must be able to forward based on
any destination IP address
— Given address, it needs to know next hop
— Naive: one entry per address

— There would be 108 entries!

* Solutions
— Hierarchy (many examples)

— Address aggregation

 Address allocation is very important (should mirror topology)

— Default routes

IP Connectivity

* For each destination address, must either:

— Have prefix mapped to next hop in forwarding table

— Know “smarter router” — default for unknown prefixes

* Route using longest prefix match, default is prefix
0.0.0.0/0

* Core routers know everything - no default

* Manage using notion of Autonomous System (AS)

Internet structure, 1990

@ NSENET backbone @
BARRNET MidNet
regional Westnet regional
regional

) s T) @D G

* Several independent organizations

* Hierarchical structure with single backbone

Internet structure, today

Large corporation

“Consumer” ISP

(19 2
Large corporation Consumer” ISP

Small
corporation

* Multiple backbones, more arbitrary structure

Autonomous Systems

* Correspond to an administrative domain
— AS’s reflect organization of the Internet
— E.g., Brown, large company;, etc.
— Identified by a 16-bit number

e Goals

— AS’s choose their own local routing algorithm
— AS’s want to set policies about non-local routing

— AS’s need not reveal internal topology of their network

AS-level

INTERNET GRAPH

7473 ‘gpr‘TeI) ;

Peering:
OutDegree
1845 157

3904 (Hutchison) €8 4637 (Reach)|
4766 (Korea Tel) (S) 3 (eac) 1614 137
1383 117
8928(Interoute)
702(MCl)

1273(CW.
786(JANET) F5459(London IX)
174(Cogent) [l 3257(Tiscali))
1239(Sprint)

1153 98
3549(Global Crossing) 5511(France Tel) .-

922 78

58

461 39

230 19

Inter and Intra-domain routing

* Routing organized in two levels

* Intra-domain routing
— Complete knowledge, strive for optimal paths
— Scale to ~100 networks
— Today

* Inter-domain routing
— Aggregated knowledge, scale to Internet
— Dominated by policy

* E.g., route through X, unless X is unavailable, then route
through Y. Never route traffic from X to Y.

— Policies reflect business agreements, can get complex
— Next lecture

Intra-Domain Routing

Network as a graph

* Nodes are routers
* Assign cost to each edge
— Can be based on latency, b/w, queue length, ...
* Problem: find lowest-cost path between nodes

— Each node individually computes routes

Basic Algorithms

* Two classes of intra-domain routing algorithms

 Distance Vector

— Requires only local state
— Harder to debug

— Can suffer from loops

 Link State

— Each node has global view of the network
— Simpler to debug
— Requires global state

Distance Vector

Local routing algorithm

Each node maintains a set of triples

— <Destination, Cost, NextHop>
Exchange updates with neighbors

— Periodically (seconds to minutes)

— Whenever table changes (triggered update)
Each update is a list of pairs

— <Destination, Cost>

Update local table if receive a “better” route
— Smaller cost

Refresh existing routes, delete if time out

Calculating the best path

* Bellman-Ford equation
* Let:

— D, (b) denote the current best distance from ato b
— ¢(a,b) denote the cost of a link fromatob

 Then D_(y) = min_(c(x,z) + D_(y))
* Routing messages contain D
* D is any additive metric

— e.g, number of hops, queue length, delay
— log can convert multiplicative metric into an additive one

(e.g., probability of failure)

DV Example

B’s routing table

Next Hop

A 1 A

Q T g 0O
> > > 0O 0O

1
2
2
2
3

Adapting to Failures

F-G fails

F sets distance to G to infinity, propagates

A sets distance to G to infinity

A receives periodic update from C with 2-hop path to G

A sets distance to G to 3 and propagates
F sets distance to G to 4, through A

Count-to-Infinity

* Link from A to E fails

* A advertises distance of infinity to E

* B and C advertise a distance of 2 to E

* B decides it can reach E in 3 hops through C
* A decides it can reach E in 4 hops through B

* Cdecides it can reach E in 5 hops through A, ...

* When does this stop?

Good news travels fast

A

10

* A decrease in link cost has to be fresh information

* Network converges at most in O(diameter) steps

Bad news travels slowly

B
12
A C

10

* An increase in cost may cause confusion with
old information

* May form loops

How to avoid loops

* IP TTL field prevents a packet from living
forever

— Does not repair a loop
* Simple approach: consider a small cost n (e.g.,
16) to be infinity
— After n rounds decide node is unavailable
— But rounds can be long, this takes time

* Distance vector based only on local
information

Better loop avoidance

* Split Horizon

— When sending updates to node A, don't include routes
you learned from A

— Prevents B and C from sending cost 2 to A

* Split Horizon with Poison Reverse

— Rather than not advertising routes learned from A,
explicitly include cost of eo.

— Faster to break out of loops, but increases
advertisement sizes

Warning

 Split horizon/split horizon with poison reverse
only help between two nodes
— Can still get loop with three nodes involved

— Might need to delay advertising routes after changes,
but affects convergence time

Link State Routing

* Strategy:

— send to all nodes information about directly
connected neighbors

* Link State Packet (LSP)
— ID of the node that created the LSP
— Cost of link to each directly connected neighbor
— Sequence number (SEQNO)
— TTL

Reliable Flooding

Store most recent LSP from each node

— Ignore earlier versions of the same LSP

Forward LSP to all nodes but the one that sent it

Generate new LSP periodically
— Increment SEQNO

Start at SEQNO=0 when reboot

— If you hear your own packet with SEQNO=n, set your next
SEQNO to n+1

Decrement TTL of each stored LSP
— Discard when TTL=0

Calculating best path

* Djikstra’s single-source shortest path algorithm
— Each node computes shortest paths from itself

* Let:
— N denote set of nodes in the graph

— 1(i,j) denote the non-negative link between i,
* oo if there is no direct link between i and j

— C(n) denote the cost of path from s to n
— s denotes yourself (node computing paths)

e Initialize variables
— M = {s} (set of nodes incorporated thus far)
— For each n in N-{s}, C(n) =1(s,n)
— R(n) = nifl(s,n) < o, — otherwise

Djikstra’s Algorithm

e While N#M
— Let w €(N-M) be the node with lowest C(w)
— M=MU {w}
— Foreach n € (N-M), if C(w) + 1(w,n) < C(n)
— then C(n) = C(w) + 1(w,n), R(n) = R(w)

* Example: D: (D,0,-) (C,2,C) (B,5,C) (A,10,C)

Distance Vector vs. Link State

* # of messages (per node)
— DV: O(d), where d is degree of node
— LS: O(nd) for n nodes in system
* Computation
— DV: convergence time varies (e.g., count-to-infinity)
— LS: O(n?) with O(nd) messages
* Robustness: what happens with malfunctioning
router?
— DV: Nodes can advertise incorrect path cost

— DV: Others can use the cost, propagates through network
— LS: Nodes can advertise incorrect link cost

Metrics

* Original ARPANET metric

— measures number of packets enqueued in each link
— neither latency nor bandwidth in consideration

e New ARPANET metric

— Stamp arrival time (AT) and departure time (DT)

— When link-level ACK arrives, compute
Delay = (DT - AT) + Transmit + Latency

— If timeout, reset DT to departure time for retransmission
— Link cost = average delay over some time period
* Fine Tuning
— Compressed dynamic range
— Replaced Delay with link utilization
* Today: commonly set manually to achieve specific
goals

Examples

e RIPV2

— Fairly simple implementation of DV
— RFC 2453 (38 pages)

* OSPF (Open Shortest Path First)

— More complex link-state protocol

— Adds notion of areas for scalability
— RFC 2328 (244 pages)

RIPv2

* Runs on UDP port 520
* Link cost =1

* Periodic updates every 30s, plus triggered
updates
* Relies on count-to-infinity to resolve loops
— Maximum diameter 15 (oo = 16)

— Supports split horizon, poison reverse

Packet format

0 1 2 3
01234567890123456789012345678901
bttt =ttt ——F— b — bt ==t —F =t —F ot —F = —F == —+
| command (1) | version (1) | must be zero (2) I

o o o +

~ RIP Entry (20) ~

RIPv2 Entry

0 1 2 3
01234567890123456789012345678901
t—t—d—t—t—d—t—t—d—t—t—d—t—t b=ttt =ttt =ttt b=t b~ b=t —F—F—+—+
| address family identifier (2) | Route Tag (2) I
o o +
| IP address (4) |
e L +
| Subnet Mask (4) |
T ettt et EE +
| Next Hop (4) |
e +
| Metric (4) |

Route Tag field

* Allows RIP nodes to distinguish internal and
external routes

* Must persist across announcements

* E.g.,encode AS

Next Hop field

 Allows one router to advertise routes for
multiple routers on the same subnet

* Suppose only XR1 talks RIPv2:

| IR1 | | IR2| | IR3| | XR1| | XR2 | | XR3 |

——+—= ——4—= ——4—— ——+—= == ——F—-
| | | I | |

——t—————— - ————————— - - +—-

OSPFv2

* Link state protocol

* Runs directly over IP (protocol 89)

— Has to provide its own reliability

* All exchanges are authenticated

* Adds notion of areas for scalability

OSPF Areas

Area 0 is “backbone” area (includes all
boundary routers)

Trafhfic between two areas must always go
through area 0

Only need to know how to route exactly within
area

Otherwise, just route to the appropriate area

Tradeoft: scalability versus optimal routes

OSPF Areas

/ Boundary router

@ Backbone
@’f# router
Backbone

. ra

.)
F i
/ I
{ |
|
j

. 2 i I| '
r i | I.'
@ . Area ‘
*. border | \ | @
' routers | " '-

|
1
H -

i K
= ! II- .'lI ™ - *,
~s @ /Internal . (35
M.x .__,.- HH_ ..._.- le% .-.,

routers

Area 1 Area 2 Area 3

Next Class

* Inter-domain routing: how scale routing to the
entire Internet

