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Cast 

•  Instructor: Rodrigo Fonseca (rfonseca) 
•  GTA: Andrew Ferguson (adf) 
•  HTA: Son Nguyen (sbnguyen) 
•  UTA: Osmar Olivo (oolivo) 
•  Email: cs168tas@cs.brown.edu (all of us) 



Overview 

•  Goal: learn concepts underlying networks 
–  How do networks work? What can one do with them? 
–  Gain a basic understanding of the Internet 
–  Gain experience writing protocols 
–  Tools to understand new protocols and applications 



Prerequisites 

•  CSCI-0320/CSCI-0360 (or equivalent).  
–  We assume basic OS concepts (kernel/user, threads/

processes, I/O, scheduling)  
•  Low-level programming  or be willing to learn 

quickly  
–  threads, locking, explicit memory management, … 

•  We allow any* language, but really support only C 
–  You will be bit twiddling and byte packing… 



Administrivia 

•  All assignments will be on the course page 
http://www.cs.brown.edu/courses/cs168/s11!

•  Text: Peterson and Davie, Computer Networks  - A 
Systems Approach, 4th Edition 

•  You are responsible to check the web page! 
–  All announcements will be there 
–  Textbook chapters corresponding to lectures: read them 

before class 
–  Handouts, due dates, programming resources, etc… 
–  Subject to change (reload before checking assignments) 



Grading 

•  Exams: Midterm (15%) and Final (25%) 
•  Homework: Four written assignments (20%) 
–  Short answer and design questions 

•  4 Programming Projects (40%) 
–  User level networking: streaming music server 
–  IP, as an overlay, on top of UDP 
–  TCP, on top of your IP 
–  Final (TBD, we will solicit your input) 



Networks 

•  What is a network? 
–  System of lines/channels that interconnect 
–  E.g., railroad, highway, plumbing, postal, telephone, 

social, computer 
•  Computer Network 
–  Moves information 
–  Nodes: general-purpose computers (most nodes) 
–  Links: wires, !ber optics, EM spectrum, composite…  



Why Study Computer Networks? 

•  Many nodes are general-purpose computers 
•  Very easy to innovate and develop new uses of 

the network: you can program the nodes 
•  Contrast with the ossi!ed Telephone network: 
–  Can’t program most phones 
–  Intelligence in the network, control by parties vested 

in the status quo, … 



Growth of the Internet 

Source:	
  Miguel	
  Angel	
  Todaro	
  



Source:	
  Facebook	
  



Traceroute	
  map	
  of	
  the	
  Internet,	
  ~5	
  million	
  edges,	
  circa	
  2003.	
  opte.org	
  



Why should you take this course? 

•  Networks are cool! 
–  Incredible impact: social, economic, political, 

educational, … 
•  Incredible complexity 
•  Continuously changing and evolving 
–  Any fact you learn will be inevitably out of date   
–  Learn general underlying principles 

•  Learn to program the network 



Roadmap 

•  Assignments: learn by implementing 
–  Warm up: Snowcast, a networked music server 

•  Get a feel for how applications use the network 
•  Build knowledge from the ground up 

–  Link individual nodes 
–  Local networks with multiple nodes 
–  IP: Connect hosts across several networks 
–  Transport: Connect processes on different hosts 
–  Applications 

•  A few cross-cutting issues 
–  Security, multimedia, overlay networks, P2P… 



Two-minutes for stretching 



Building Blocks 

•  Nodes: Computers (hosts), dedicated routers, …  
•  Links: Coax, twisted pair, !ber, radio, … 

•  Physical Layer: Several questions: 
–  Voltage, frequency 
–  Wired, wireless 

•  Link Layer: how to send data? 
–  When to talk 
–  What to say (format, “language”) 

Stay tuned for lectures 3 and 4… 
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How to connect more nodes? 

Multiple wires 
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From Links to Networks 

•  To scale to more nodes, use switching 
–  Nodes can connect to multiple other nodes 
–  Recursively, one node can connect to multiple networks 



Switching Strategies 
•  Circuit Switching – virtual link between two nodes 
–  Set up circuit (e.g. dialing, signaling) – may fail: busy 
–  Transfer data at known rate 
–  Tear down circuit 

•  Packet Switching 
–  Forward bounded-size messages. 
–  Each message can have different senders/receivers 
–  Focus of this class 

Analogy: circuit switching reserves the highway for a cross-
country trip. Packet switching interleaves everyone’s cars. 



Multiplexing 

•  What to do when multiple "ows must share a link? 
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STDM

4 521 631 4 52

Frames

6Slots: 3

• Synchronous time-division multiplexing
- Divide time into equal sized quanta, round-robin

- Provide illusion of direct link for circuit switched net

- But also wastes capacity if not enough flows

- And doesn’t degrade gracefully when flows > slots

•  Synchronous time-division multiplexing 
–  Divide time into equal-sized quanta, round robin 
–  Illusion of direct link for switched circuit net 
–  But wastes capacity if not enough #ows 
–  Also doesn’t degrade gracefully when more #ows than slots 

STDM 



FDM 

•  Frequency-division multiplexing: allocates a 
frequency band for each "ow 
–  Same TV channels and radio stations 

•  Similar drawbacks to STDM 
–  Wastes bandwidth if someone not sending 
–  Can run out of spectrum 



Statistical Multiplexing 

•  Idea: like STDM but with no pre-determined 
time slots (or order!) 

•  Maximizes link utilization 
–  Link is never idle if there are packets to send 

…



Statistical Multiplexing 

•  Cons: 
–  Hard to guarantee fairness 
–  Unpredictable queuing delays 
–  Packets may take different paths 



Protocol Layering 

•  A network packet from A to D must be put in 
link packets A to B, B, to C, C to D 

•  Can view this encapsulation as a stack of layers 
–  Each layer produces packets that become the payload 

of the lower layer’s packets 

Protocol layering

TCP

IP

Link Layer
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Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address



OSI Reference Model 
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Layers 

•  Physical – sends individual bits 
•  Data Link – sends frames, handles media access 
•  Network – sends packets, using routing 
•  Transport – demultiplexes, provides reliability, 

"ow and congestion control 
•  Session – can tie together multiple streams 

(e.g., audio & video) 
•  Presentation – crypto, conversion between 

representations 
•  Application – what the users sees, e.g., HTTP 



Addressing 

•  Each node typically has a unique* name 
–  When that name also tells you how to get to the node, it is 

called an address 
•  Each layer can have its own naming/addressing 
•  Routing is the process of !nding a path to the 

destination 
–  In packet switched networks, each packet must have a 

destination address 
–  For circuit switched, use address to set up circuit 

•  Special addresses can exist for broadcast/multicast/
anycast 

* or thinks it does, in case there is a shortage 



Internet Protocol (IP) 

•  Used by most computer networks today 
–  Runs over a variety of physical networks, can connect 

Ethernet, wireless, modem lines, etc. 
•  Every host has a unique 4-byte IP address (IPv4) 
–  E.g.,  www.cs.brown.edu 128.148.32.110 
–  e network knows how to route a packet to any address 

•  Need more to build something like the Web 
–  Need naming (DNS) 
–  Interface for browser and server soware (next lecture) 
–  Need demultiplexing within a host: which packets are for 

web browser, Skype, or the mail program? 



Inter-process Communication 

•  Talking from host to host is great, but we want 
abstraction of inter-process communication 

•  Solution: encapsulate another protocol within IP 
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Transport: UDP and TCP 

•  UDP and TCP most popular protocols on IP 
–  Both use 16-bit port number & 32-bit IP address 
–  Applications bind a port & receive traffic on that port 

•  UDP – User (unreliable) Datagram Protocol 
–  Exposes packet-switched nature of Internet 
–  Sent packets may be dropped, reordered, even 

duplicated (but there is corruption protection) 
•  TCP – Transmission Control Protocol 
–  Provides illusion of reliable ‘pipe’ or ‘stream’ between 

two processes anywhere on the network 
–  Handles congestion and #ow control 



Uses of TCP 

•  Most applications use TCP 
–  Easier to program (reliability is convenient) 
–  Automatically avoids congestion (don’t need to worry 

about taking down the network 
•  Servers typically listen on well-know ports: 
–  SSH: 22 
–  SMTP (email): 25 
–  Finger: 79 
–  HTTP (web): 80 



Internet Layering 

•  Strict layering not required 
–  TCP/UDP “cheat” to detect certain errors in IP-level 

information like address 
–  Overall, allows evolution, experimentation 
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IP as the Narrow Waist 

•  Many applications protocols on top of UDP & TCP 
•  IP works over many types of networks 
•  is is the “Hourglass” architecture of the Internet.  

–  If every network supports IP, applications run over many 
different networks (e.g., cellular network) 

…
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Coming Up 

•  Next class: how do applications use the network? 
–  Introduction to programming with Sockets 
–  Peterson & Davie 1.4 
–  Beej’s Guide to Network Programming (link on the 

course website) 
•  en… 

–  We start our journey up the network stack, starting 
from how two computers can talk to each other. 

•  Remember: start your projects now! 


