
CSCI-1680 :: Computer Networks

Rodrigo Fonseca (rfonseca)

http://www.cs.brown.edu/courses/cs168!
cs168tas@cs.brown.edu!

Based	
 partly	
 on	
 lecture	
 notes	
 by	
 David	
 Mazières,	
 Phil	
 Levis,	
 John	
 Janno<,	
 Peterson	
 &	
 Davie	

Cast

•  Instructor: Rodrigo Fonseca (rfonseca)
•  GTA: Andrew Ferguson (adf)
•  HTA: Son Nguyen (sbnguyen)
•  UTA: Osmar Olivo (oolivo)
•  Email: cs168tas@cs.brown.edu (all of us)

Overview

•  Goal: learn concepts underlying networks
–  How do networks work? What can one do with them?
–  Gain a basic understanding of the Internet
–  Gain experience writing protocols
–  Tools to understand new protocols and applications

Prerequisites

•  CSCI-0320/CSCI-0360 (or equivalent).
–  We assume basic OS concepts (kernel/user, threads/

processes, I/O, scheduling)
•  Low-level programming or be willing to learn

quickly
–  threads, locking, explicit memory management, …

•  We allow any* language, but really support only C
–  You will be bit twiddling and byte packing…

Administrivia

•  All assignments will be on the course page
http://www.cs.brown.edu/courses/cs168/s11!

•  Text: Peterson and Davie, Computer Networks - A
Systems Approach, 4th Edition

•  You are responsible to check the web page!
–  All announcements will be there
–  Textbook chapters corresponding to lectures: read them

before class
–  Handouts, due dates, programming resources, etc…
–  Subject to change (reload before checking assignments)

Grading

•  Exams: Midterm (15%) and Final (25%)
•  Homework: Four written assignments (20%)
–  Short answer and design questions

•  4 Programming Projects (40%)
–  User level networking: streaming music server
–  IP, as an overlay, on top of UDP
–  TCP, on top of your IP
–  Final (TBD, we will solicit your input)

Networks

•  What is a network?
–  System of lines/channels that interconnect
–  E.g., railroad, highway, plumbing, postal, telephone,

social, computer
•  Computer Network
–  Moves information
–  Nodes: general-purpose computers (most nodes)
–  Links: wires, !ber optics, EM spectrum, composite…

Why Study Computer Networks?

•  Many nodes are general-purpose computers
•  Very easy to innovate and develop new uses of

the network: you can program the nodes
•  Contrast with the ossi!ed Telephone network:
–  Can’t program most phones
–  Intelligence in the network, control by parties vested

in the status quo, …

Growth of the Internet

Source:	
 Miguel	
 Angel	
 Todaro	

Source:	
 Facebook	

Traceroute	
 map	
 of	
 the	
 Internet,	
 ~5	
 million	
 edges,	
 circa	
 2003.	
 opte.org	

Why should you take this course?

•  Networks are cool!
–  Incredible impact: social, economic, political,

educational, …
•  Incredible complexity
•  Continuously changing and evolving
–  Any fact you learn will be inevitably out of date
–  Learn general underlying principles

•  Learn to program the network

Roadmap

•  Assignments: learn by implementing
–  Warm up: Snowcast, a networked music server

•  Get a feel for how applications use the network
•  Build knowledge from the ground up

–  Link individual nodes
–  Local networks with multiple nodes
–  IP: Connect hosts across several networks
–  Transport: Connect processes on different hosts
–  Applications

•  A few cross-cutting issues
–  Security, multimedia, overlay networks, P2P…

Two-minutes for stretching

Building Blocks

•  Nodes: Computers (hosts), dedicated routers, …
•  Links: Coax, twisted pair, !ber, radio, …

•  Physical Layer: Several questions:
–  Voltage, frequency
–  Wired, wireless

•  Link Layer: how to send data?
–  When to talk
–  What to say (format, “language”)

Stay tuned for lectures 3 and 4…

(a)

(b)
…

How to connect more nodes?

Multiple wires
(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…

(a)

(b)
…Shared medium

From Links to Networks

•  To scale to more nodes, use switching
–  Nodes can connect to multiple other nodes
–  Recursively, one node can connect to multiple networks

Switching Strategies
•  Circuit Switching – virtual link between two nodes
–  Set up circuit (e.g. dialing, signaling) – may fail: busy
–  Transfer data at known rate
–  Tear down circuit

•  Packet Switching
–  Forward bounded-size messages.
–  Each message can have different senders/receivers
–  Focus of this class

Analogy: circuit switching reserves the highway for a cross-
country trip. Packet switching interleaves everyone’s cars.

Multiplexing

•  What to do when multiple "ows must share a link?

L2

L3

R2

R3

L1 R1

Switch 1 Switch 2

STDM

4 521 631 4 52

Frames

6Slots: 3

• Synchronous time-division multiplexing
- Divide time into equal sized quanta, round-robin

- Provide illusion of direct link for circuit switched net

- But also wastes capacity if not enough flows

- And doesn’t degrade gracefully when flows > slots

•  Synchronous time-division multiplexing
–  Divide time into equal-sized quanta, round robin
–  Illusion of direct link for switched circuit net
–  But wastes capacity if not enough #ows
–  Also doesn’t degrade gracefully when more #ows than slots

STDM

FDM

•  Frequency-division multiplexing: allocates a
frequency band for each "ow
–  Same TV channels and radio stations

•  Similar drawbacks to STDM
–  Wastes bandwidth if someone not sending
–  Can run out of spectrum

Statistical Multiplexing

•  Idea: like STDM but with no pre-determined
time slots (or order!)

•  Maximizes link utilization
–  Link is never idle if there are packets to send

…

Statistical Multiplexing

•  Cons:
–  Hard to guarantee fairness
–  Unpredictable queuing delays
–  Packets may take different paths

Protocol Layering

•  A network packet from A to D must be put in
link packets A to B, B, to C, C to D

•  Can view this encapsulation as a stack of layers
–  Each layer produces packets that become the payload

of the lower layer’s packets

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

OSI Reference Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Layers

•  Physical – sends individual bits
•  Data Link – sends frames, handles media access
•  Network – sends packets, using routing
•  Transport – demultiplexes, provides reliability,

"ow and congestion control
•  Session – can tie together multiple streams

(e.g., audio & video)
•  Presentation – crypto, conversion between

representations
•  Application – what the users sees, e.g., HTTP

Addressing

•  Each node typically has a unique* name
–  When that name also tells you how to get to the node, it is

called an address
•  Each layer can have its own naming/addressing
•  Routing is the process of !nding a path to the

destination
–  In packet switched networks, each packet must have a

destination address
–  For circuit switched, use address to set up circuit

•  Special addresses can exist for broadcast/multicast/
anycast

* or thinks it does, in case there is a shortage

Internet Protocol (IP)

•  Used by most computer networks today
–  Runs over a variety of physical networks, can connect

Ethernet, wireless, modem lines, etc.
•  Every host has a unique 4-byte IP address (IPv4)
–  E.g., www.cs.brown.edu 128.148.32.110
–  e network knows how to route a packet to any address

•  Need more to build something like the Web
–  Need naming (DNS)
–  Interface for browser and server soware (next lecture)
–  Need demultiplexing within a host: which packets are for

web browser, Skype, or the mail program?

Inter-process Communication

•  Talking from host to host is great, but we want
abstraction of inter-process communication

•  Solution: encapsulate another protocol within IP

Host

HostHost

Channel

Application

Host

Application

Host

Transport: UDP and TCP

•  UDP and TCP most popular protocols on IP
–  Both use 16-bit port number & 32-bit IP address
–  Applications bind a port & receive traffic on that port

•  UDP – User (unreliable) Datagram Protocol
–  Exposes packet-switched nature of Internet
–  Sent packets may be dropped, reordered, even

duplicated (but there is corruption protection)
•  TCP – Transmission Control Protocol
–  Provides illusion of reliable ‘pipe’ or ‘stream’ between

two processes anywhere on the network
–  Handles congestion and #ow control

Uses of TCP

•  Most applications use TCP
–  Easier to program (reliability is convenient)
–  Automatically avoids congestion (don’t need to worry

about taking down the network
•  Servers typically listen on well-know ports:
–  SSH: 22
–  SMTP (email): 25
–  Finger: 79
–  HTTP (web): 80

Internet Layering

•  Strict layering not required
–  TCP/UDP “cheat” to detect certain errors in IP-level

information like address
–  Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application

IP as the Narrow Waist

•  Many applications protocols on top of UDP & TCP
•  IP works over many types of networks
•  is is the “Hourglass” architecture of the Internet.

–  If every network supports IP, applications run over many
different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Coming Up

•  Next class: how do applications use the network?
–  Introduction to programming with Sockets
–  Peterson & Davie 1.4
–  Beej’s Guide to Network Programming (link on the

course website)
•  en…

–  We start our journey up the network stack, starting
from how two computers can talk to each other.

•  Remember: start your projects now!

