CSCI-1680 Link Layer I

Rodrigo Fonseca

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti

• Last time

- Physical layer: encoding, modulation
- Today
 - Link layer framing
 - Getting frames across: reliability, performance

Layers, Services, Protocols

Link Layer Framing

Framing

- Given a stream of bits, how can we represent boundaries?
- Break sequence of bits into a frame
- Typically done by network adaptor

Representing Boundaries

- Sentinels
- Length counts
- Clock-based

Sentinel-based Framing

- Byte-oriented protocols (e.g. BISYNC, PPP)
 - Place special bytes (SOH, ETX,...) in the beginning, end of messages

- What if ETX appears in the body?
 - Escape ETX byte by prefixing DEL byte
 - Escape DEL byte by prefixing DEL byte
 - Technique known as *character stuffing*

Bit-Oriented Protocols

- View message as a stream of bits, not bytes
- Can use sentinel approach as well (e.g., HDLC)

- HDLC begin/end sequence 01111110
- Use *bit stuffing* to escape 01111110
 - Always append 0 after five consecutive 1s in data
 - After five 1s, receiver uses next two bits to decide if stuffed, end of frame, or error.

Length-based Framing

• Drawback of sentinel techniques

- Length of frame depends on data

• Alternative: put length in header (e.g., DDCMP)

• Danger: Framing Errors

- What if high bit of counter gets corrupted?
- Adds 8K to length of frame, may lose many frames
- CRC checksum helps detect error

Clock-based Framing

- E.g., SONET (Synchronous Optical Network)
 - Each frame is 125µs long
 - Look for header every 125µs
 - Encode with NRZ, but first XOR payload with 127-bit string to ensure lots of transitions

Error Detection

• Basic idea: use a checksum

- Compute small checksum value, like a hash of packet

Good checksum algorithms

- Want several properties, *e.g.*, detect any single-bit error
- Details later

Link Layer

Getting Frames Across Reliability and Performance

Sending Frames Across

Sending Frames Across

Throughput: bits / s

Which matters most, bandwidth or delay?

- How much data can we send during one RTT?
- *E.g.*, send request, receive file

• For small transfers, latency more important, for bulk, throughput more important

Performance Metrics

- Throughput Number of bits received/unit of time
 e.g. 10Mbps
- Goodput Useful bits received per unit of time
- Latency How long for message to cross network

– Process + Queue + Transmit + Propagation

• Jitter – Variation in latency

Latency

• Processing

– Per message, small, limits throughput

- e.g. $\frac{100Mb}{s} \times \frac{pkt}{1500B} \times \frac{B}{8b} \approx 8,333pkt/s$ or $120\mu s/pkt$ • Oueue

- Highly variable, offered load vs outgoing b/w
- Transmission
 - Size/Bandwidth
- Propagation
 - Distance/Speed of Light

Reliable Delivery

- Several sources of errors in transmission
- Error detection can discard bad frames
- Problem: if bad packets are lost, how can we ensure reliable delivery?

– Exactly-once semantics = at least once + at most once

At Least Once Semantics

- How can the sender know packet arrived *at least once*?
 - Acknowledgments + Timeout
- Stop and Wait Protocol
 - S: Send packet, wait
 - R: Receive packet, send ACK
 - S: Receive ACK, send next packet
 - S: No ACK, timeout and retransmit

Receiver

Stop and Wait Problems

- Duplicate data
- Duplicate acks
- Slow (channel idle most of the time!)
- May be difficult to set the timeout value

Duplicate data: adding sequence numbers

At Most Once Semantics

- How to avoid duplicates?
 - Uniquely identify each packet
 - Have receiver and sender remember
- Stop and Wait: add 1 bit to the header
 - Why is it enough?

Going faster: sliding window protocol

- Still have the problem of keeping pipe full
 - Generalize approach with > 1-bit counter
 - Allow multiple outstanding (unACKed) frames
 - Upper bound on unACKed frames, called *window*

How big should the window be?

- How many bytes can we transmit in one RTT?
 - BW B/s x RTT s => "Bandwidth-Delay Product"

• Can view network as a pipe

- For full utilization want bytes in flight \geq bandwidth \times delay
- But don't want to overload the network (future lectures)
- What if protocol doesn't involve bulk transfer?
 - Get throughput through concurrency service multiple clients simultaneously

Sliding Window Sender

- Assign sequence number (SeqNum) to each frame
- Maintain three state variables
 - send window size (SWS)
 - last acknowledgment received (LAR)
 - last frame sent (LFS)

- Maintain invariant: LFS LAR \leq SWS
- Advance LAR when ACK arrives
- Buffer up to SWS frames

Sliding Window Receiver

- Maintain three state variables:
 - receive window size (RWS)
 - largest acceptable frame (LAF)
 - last frame received (LFR)

- Maintain invariant: LAF LFR \leq RWS
- Frame SeqNum arrives:
 - if LFR < SeqNum \leq LAF, accept
 - if SeqNum \leq LFR or SeqNum > LAF, discard
- Send *cumulative* ACKs

Tuning Send Window

- How big should SWS be?
 - "Fill the pipe"
- How big should RWS be?
 - $-1 \le RWS \le SWS$
- How many distinct sequence numbers needed?

Example

- SWS = RWS = 5. Are 6 seq #s enough?
- Sender sends 0,1,2,3,4
- All acks are lost
- Sender sends 0,1,2,3,4 again
- •
- What are the possible views of the sender and receiver?

Tuning Send Window

- How big should SWS be?
 - "Fill the pipe"
- How big should RWS be?
 - $\circ 1 \leq RWS \leq SWS$
- How many distinct sequence numbers needed?
 - SWS can't be more than half of the space of valid seq#s.

Summary

- Want exactly once
 - At least once: acks + timeouts + retransmissions
 - At most once: sequence numbers
- Want efficiency
 - Sliding window

Error Detection and Correction

Error Detection

- Idea: have some codes be *invalid*
 - Must add bits to catch errors in packet
- Sometimes can also *correct* errors
 - If enough redundancy
 - Might have to retransmit
- Used in multiple layers
- Three examples today:
 - Parity
 - Internet Checksum
 - CRC

Simplest Schemes

- Repeat frame *n* times
 - Can we detect errors?
 - Can we correct errors?
 - Voting
 - Problem: high redundancy : *n*
- Example: send each bit 3 times
 - Valid codes: 000 111
 - Invalid codes : 001 010 011 100 101 110
 - Corrections : 0 0 1 0 1 1

Parity

- Add a parity bit to the end of a word
- Example with 2 bits:
 - Valid: 000 011 101 110
 - Invalid: 001 010 010 111
 - Can we correct?
- Can detect odd number of bit errors
 - No correction

In general

• Hamming distance: number of bits that are different

- E.g.: HD (00001010, 01000110) = 3

- If min HD between valid codewords is *d*:
 - Can detect *d*-1 bit error
 - Can correct $\lfloor (d-1)/2 \rfloor$ bit errors
- What is *d* for parity and 3-voting?

- Add 1 parity bit for each 7 bits
- Add 1 parity bit for each bit position across the frame)
 - Can correct single-bit errors
 - Can detect 2- and 3-bit errors, most 4-bit errors
- Find a 4-bit error that can't be corrected

We did not cover these...

IP Checksum

- Fixed-length code
 - n-bit code should capture all but 2⁻ⁿ fraction of errors
 - Why?
 - Trick is to make sure that includes all *common* errors
- IP Checksum is an example
 - 1's complement of 1's complement sum of every 2 bytes

```
uint16 cksum(uint16 *buf, int count) {
    uint32 sum = 0;
    while (count--)
        if ((sum += *buf++) & 0xffff0000) // carry
            sum = (sum & 0xffff) + 1;
    return ~(sum & 0xffff);
}
```

- Checking
- Do the sum again, including the checksum. If correct, the sum should be all 1's (This is super fast to check)

How good is it?

- 16 bits not very long: misses how many errors?
 - -1 in 2^{16} , or 1 in 64K errors
- Checksum does catch all 1-bit errors
- But not all 2-bit errors
 - E.g., increment word ending in 0, decrement one ending in 1
- Checksum also optional in UDP
 - All 0s means no checksums calculated
 - If checksum word gets wiped to 0 as part of error, bad news

From rfc791 (IP)

"This is a simple to compute checksum and experimental evidence indicates it is adequate, but it is provisional and may be replaced by a CRC procedure, depending on further experience."

CRC – Error Detection with Polynomials

- Goal: maximize protection, minimize bits
- Consider message to be a polynomial in $Z_2[x]$
 - Each bit is one coefficient
 - E.g., message 10101001 -> $m(x) = x^7 + x^5 + x^3 + 1$
- Can reduce one polynomial modulo another
 - Let $n(x) = m(x)x^3$. Let $C(x) = x^3 + x^2 + 1$.
 - n(x) "**mod**" C(x) : r(x)
 - Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x) and degree of r(x) < degree of C(x)

- Analogous to taking 11 mod 5 = 1

Polynomial Division Example

• Just long division, but addition/subtraction is XOR

CRC

- Select a divisor polynomial C(x), degree k
 - C(x) should be *irreducible* not expressible as a product of two lower-degree polynomials in Z₂[x]
- Add k bits to message
 - Let $n(x) = m(x)x^k$ (add k 0's to m)
 - Compute $r(x) = n(x) \mod C(x)$
 - Compute n'(x) = n(x) r(x) (will be divisible by C(x))
 (subtraction is XOR, just set k lowest bits to r(x)!)
- Checking CRC is easy
 - Reduce message by C(x), make sure remainder is 0

Why is this good?

- Suppose you send m(x), recipient gets m'(x)
 - E(x) = m'(x) m(x) (all the incorrect bits)
 - If CRC passes, C(x) divides m'(x)
 - Therefore, C(x) must divide E(x)
- Choose C(x) that doesn't divide any common errors!
 - All single-bit errors caught if x^k , x^0 coefficients in C(x) are 1
 - All 2-bit errors caught if at least 3 terms in C(x)
 - Any odd number of errors if last two terms (x + 1)
 - Any error burst less than length k caught

Common CRC Polynomials

- Polynomials not trivial to find
 - Some studies used (almost) exhaustive search
- CRC-8: $x^8 + x^2 + x^1 + 1$
- CRC-16: $x^{16} + x^{15} + x^2 + 1$
- CRC-32: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$
- CRC easily computable in hardware

An alternative for reliability

• Erasure coding

- Assume you can detect errors
- Code is designed to tolerate entire missing frames
 - Collisions, noise, drops because of bit errors
- Forward error correction
- Examples: Reed-Solomon codes, LT Codes, Raptor Codes
- Property:
 - From K source frames, produce B > K encoded frames
 - Receiver can reconstruct source with *any* K' frames, with K' *slightly* larger than K
 - Some codes can make B as large as needed, on the fly

LT Codes

- Luby Transform Codes
 - Michael Luby, circa 1998
- Encoder: repeat B times
 - 1. Pick a degree *d*
 - 2. Randomly select *d* source blocks. Encoded block t_n = XOR or selected blocks

LT Decoder

- Find an encoded block t_n with d=1
- Set $s_n = t_n$
- For all other blocks t_n, that include s_n, set t_n=t_n, XOR s_n
- Delete s_n from all encoding lists
- Finish if
 - 1. You decode all source blocks, or
 - 2. You run out out blocks of degree 1

Next class

- Link Layer II
 - Ethernet: dominant link layer technology
 - Framing, MAC, Addressing
 - Switching

