
CSCI-1680
Link Layer I

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti

Rodrigo Fonseca

• Last time
– Physical layer: encoding, modulation

• Today
– Link layer framing
– Getting frames across: reliability, performance

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Service: move frames to other node across link.
May add reliability, medium access control

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application.
Application-defined messages

Link Layer
Framing

Framing

• Given a stream of bits, how can we represent
boundaries?

• Break sequence of bits into a frame
• Typically done by network adaptor

Frames

Bits

Node A Node BAdaptor Adaptor

Representing Boundaries

• Sentinels
• Length counts
• Clock-based

Frames

Bits

Node A Node BAdaptor Adaptor

Sentinel-based Framing
• Byte-oriented protocols (e.g. BISYNC, PPP)
– Place special bytes (SOH, ETX,…) in the beginning, end of

messages

• What if ETX appears in the body?
– Escape ETX byte by prefixing DEL byte
– Escape DEL byte by prefixing DEL byte
– Technique known as character stuffing

S
Y

N

Header Body

8 8 8 8 168

S
Y

N

S
O

H

S
T

X

E
T

X

CRC

Bit-Oriented Protocols

• View message as a stream of bits, not bytes
• Can use sentinel approach as well (e.g., HDLC)

– HDLC begin/end sequence 01111110
• Use bit stuffing to escape 01111110
– Always append 0 after five consecutive 1s in data
– After five 1s, receiver uses next two bits to decide if

stuffed, end of frame, or error.

Header Body

8 16 16 8

CRC
Beginning
sequence

Ending
sequence

Length-based Framing

• Drawback of sentinel techniques
– Length of frame depends on data

• Alternative: put length in header (e.g., DDCMP)

• Danger: Framing Errors
– What if high bit of counter gets corrupted?
– Adds 8K to length of frame, may lose many frames
– CRC checksum helps detect error

S
Y

N

Header Body

8 8 4214 168

S
Y

N

C
la

s
s

CRCCount

Clock-based Framing
• E.g., SONET (Synchronous Optical Network)
– Each frame is 125μs long
– Look for header every 125μs
– Encode with NRZ, but first XOR payload with 127-bit

string to ensure lots of transitions
Overhead Payload

90 columns

9 rows

Error Detection

• Basic idea: use a checksum
– Compute small checksum value, like a hash of packet

• Good checksum algorithms
– Want several properties, e.g., detect any single-bit error
– Details later

Link Layer
Getting Frames Across

Reliability and Performance

Sending Frames Across

Transmission Delay

Propagation Delay
Latency

Sending Frames Across

Throughput: bits / s
…

…

Which matters most, bandwidth or delay?

• How much data can we send during one RTT?
• E.g., send request, receive file

Ti
m
e

Request

Respon
se

• For small transfers, latency more important,
for bulk, throughput more important

Performance Metrics

• Throughput - Number of bits received/unit of time
– e.g. 10Mbps

• Goodput - Useful bits received per unit of time
• Latency – How long for message to cross network
– Process + Queue + Transmit + Propagation

• Jitter – Variation in latency

Latency
• Processing
– Per message, small, limits throughput
– e.g. or 120μs/pkt

• Queue
– Highly variable, offered load vs outgoing b/w

• Transmission
– Size/Bandwidth

• Propagation
– Distance/Speed of Light

€

100Mb
s

×
pkt

1500B
×
B
8b

≈ 8,333pkt /s

Reliable Delivery

• Several sources of errors in transmission
• Error detection can discard bad frames
• Problem: if bad packets are lost, how can we

ensure reliable delivery?
– Exactly-once semantics = at least once + at most once

At Least Once Semantics

• How can the sender know packet arrived at
least once?
– Acknowledgments + Timeout

• Stop and Wait Protocol
– S: Send packet, wait
– R: Receive packet, send ACK
– S: Receive ACK, send next packet
– S: No ACK, timeout and retransmit

Sender Receiver

Frame 0

ACK 0
T

im
e

Frame 1

ACK 1

Frame 0

ACK 0

…

Sender Receiver

Frame

ACK

T
im

eo
u
t

T
im

e

Sender Receiver

Frame

ACK

T
im

eo
u
t

Frame

ACK

T
im

eo
u
t

Sender Receiver

Frame

ACKT
im

eo
u
t

Frame

ACKT
im

eo
u
t

Sender Receiver

Frame

T
im

eo
u
t

Frame

ACK

T
im

eo
u
t

(a) (c)

(b) (d)

Stop and Wait Problems

• Duplicate data
• Duplicate acks
• Slow (channel idle most of the time!)
• May be difficult to set the timeout value

Sender Receiver

Frame 0

ACK 0
T

im
e

Frame 1

ACK 1

Frame 0

ACK 0

…

Duplicate data: adding sequence numbers

At Most Once Semantics

• How to avoid duplicates?
– Uniquely identify each packet
– Have receiver and sender remember

• Stop and Wait: add 1 bit to the header
– Why is it enough?

Going faster: sliding window protocol

• Still have the problem of keeping pipe full
– Generalize approach with > 1-bit counter
– Allow multiple outstanding (unACKed) frames
– Upper bound on unACKed frames, called window

Sender Receiver

T
im

e

…
…

How big should the window be?
Sender Receiver

T
im

e

…
…

• How many bytes can we transmit in one RTT?
– BW B/s x RTT s => “Bandwidth-Delay Product”

Maximizing Throughput

• Can view network as a pipe
– For full utilization want bytes in flight ≥ bandwidth × delay
– But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
– Get throughput through concurrency – service multiple

clients simultaneously

Bandwidth-delay

Bandwidth

Delay

• Can view network as a pipe
- For full utilization want bytes in flight ≥ bandwidth×delay

- But don’t want to overload the network (future lectures)

• What if protocol doesn’t involve bulk transfer?
- Get throughput through concurrency—service multiple

clients simultaneously

Sliding Window Sender
• Assign sequence number (SeqNum) to each frame
• Maintain three state variables
– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS – LAR ≤ SWS
• Advance LAR when ACK arrives
• Buffer up to SWS frames

≤ SWS

LAR LFS

… …

Sliding Window Receiver
• Maintain three state variables:
– receive window size (RWS)
– largest acceptable frame (LAF)
– last frame received (LFR)

• Maintain invariant: LAF – LFR ≤ RWS
• Frame SeqNum arrives:
– if LFR < SeqNum ≤ LAF, accept
– if SeqNum ≤ LFR or SeqNum > LAF, discard

• Send cumulative ACKs

≤ RWS

LFR LAF

… …

Tuning Send Window

• How big should SWS be?
– “Fill the pipe”

• How big should RWS be?
– 1 ≤ RWS ≤ SWS

• How many distinct sequence numbers needed?

Example

• SWS = RWS = 5. Are 6 seq #s enough?
• Sender sends 0,1,2,3,4
• All acks are lost
• Sender sends 0,1,2,3,4 again
• …
• What are the possible views of the sender and

receiver?

Tuning Send Window

• How big should SWS be?
o “Fill the pipe”

• How big should RWS be?
o 1 ≤ RWS ≤ SWS

• How many distinct sequence numbers needed?
o SWS can’t be more than half of the space of valid

seq#s.

Summary

• Want exactly once
– At least once: acks + timeouts + retransmissions
– At most once: sequence numbers

• Want efficiency
– Sliding window

Error Detection and Correction

Error Detection

• Idea: have some codes be invalid
– Must add bits to catch errors in packet

• Sometimes can also correct errors
– If enough redundancy
– Might have to retransmit

• Used in multiple layers
• Three examples today:
– Parity
– Internet Checksum
– CRC

Simplest Schemes

• Repeat frame n times
– Can we detect errors?
– Can we correct errors?

• Voting
– Problem: high redundancy : n

• Example: send each bit 3 times
– Valid codes: 000 111
– Invalid codes : 001 010 011 100 101 110
– Corrections : 0 0 1 0 1 1

Parity

• Add a parity bit to the end of a word
• Example with 2 bits:
– Valid: 000 011 101 110
– Invalid: 001 010 010 111
– Can we correct?

• Can detect odd number of bit errors
– No correction

In general

• Hamming distance: number of bits that are
different
– E.g.: HD (00001010, 01000110) = 3

• If min HD between valid codewords is d:
– Can detect d-1 bit error
– Can correct ⌊(d-1)/2⌋ bit errors

• What is d for parity and 3-voting?

2-D Parity

• Add 1 parity bit for each 7 bits
• Add 1 parity bit for each bit position across the

frame)
– Can correct single-bit errors
– Can detect 2- and 3-bit errors, most 4-bit errors

• Find a 4-bit error that can’t be corrected

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

We did not cover these...

IP Checksum
• Fixed-length code

– n-bit code should capture all but 2-n fraction of errors
• Why?

– Trick is to make sure that includes all common errors
• IP Checksum is an example

– 1’s complement of 1’s complement sum of every 2 bytes
uint16 cksum(uint16 *buf, int count) {

uint32 sum = 0;
while (count--)

if ((sum += *buf++) & 0xffff0000) // carry
sum = (sum & 0xffff) + 1;

return ~(sum & 0xffff);
}

• Checking
– Do the sum again, including the checksum. If correct, the

sum should be all 1’s (This is super fast to check)

How good is it?

• 16 bits not very long: misses how many errors?
– 1 in 216, or 1 in 64K errors

• Checksum does catch all 1-bit errors
• But not all 2-bit errors
– E.g., increment word ending in 0, decrement one

ending in 1
• Checksum also optional in UDP
– All 0s means no checksums calculated
– If checksum word gets wiped to 0 as part of error, bad

news

From rfc791 (IP)

“This is a simple to compute checksum and
experimental evidence indicates it is adequate, but it

is provisional and may be replaced by a CRC
procedure, depending on further experience.”

CRC – Error Detection with Polynomials

• Goal: maximize protection, minimize bits
• Consider message to be a polynomial in Z2[x]
– Each bit is one coefficient
– E.g., message 10101001 -> m(x) = x7 + x5+ x3 + 1

• Can reduce one polynomial modulo another
– Let n(x) = m(x)x3. Let C(x) = x3 + x2 + 1.
– n(x) “mod” C(x) : r(x)
– Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x) and

degree of r(x) < degree of C(x)
– Analogous to taking 11 mod 5 = 1

Polynomial Division Example

• Just long division, but addition/subtraction is XOR

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101
1100
1101

1000
1101

101 Remainder

CRC
• Select a divisor polynomial C(x), degree k
– C(x) should be irreducible – not expressible as a product of

two lower-degree polynomials in Z2[x]
• Add k bits to message
– Let n(x) = m(x)xk (add k 0’s to m)
– Compute r(x) = n(x) mod C(x)
– Compute n'(x) = n(x) – r(x) (will be divisible by C(x))

(subtraction is XOR, just set k lowest bits to r(x)!)
• Checking CRC is easy
– Reduce message by C(x), make sure remainder is 0

Why is this good?

• Suppose you send m(x), recipient gets m’(x)
– E(x) = m’(x) – m(x) (all the incorrect bits)
– If CRC passes, C(x) divides m’(x)
– Therefore, C(x) must divide E(x)

• Choose C(x) that doesn’t divide any common
errors!
– All single-bit errors caught if xk, x0 coefficients in C(x) are 1
– All 2-bit errors caught if at least 3 terms in C(x)
– Any odd number of errors if last two terms (x + 1)
– Any error burst less than length k caught

Common CRC Polynomials

• Polynomials not trivial to find
– Some studies used (almost) exhaustive search

• CRC-8: x8 + x2 + x1 + 1
• CRC-16: x16 + x15 + x2 + 1
• CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 +

x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1
• CRC easily computable in hardware

An alternative for reliability

• Erasure coding
– Assume you can detect errors
– Code is designed to tolerate entire missing frames

• Collisions, noise, drops because of bit errors
– Forward error correction

• Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

• Property:
– From K source frames, produce B > K encoded frames
– Receiver can reconstruct source with any K’ frames,

with K’ slightly larger than K
– Some codes can make B as large as needed, on the fly

LT Codes

• Luby Transform Codes
– Michael Luby, circa 1998

• Encoder: repeat B times
1. Pick a degree d
2. Randomly select d source blocks. Encoded block tn=

XOR or selected blocks

LT Decoder

• Find an encoded block tn with d=1
• Set sn = tn

• For all other blocks tn’ that include sn ,
set tn’=tn’ XOR sn

• Delete sn from all encoding lists
• Finish if

1. You decode all source blocks, or
2. You run out out blocks of degree 1

Next class

• Link Layer II
– Ethernet: dominant link layer technology

• Framing, MAC, Addressing
– Switching

