
CSCI-1680
Layering and Encapsulation

Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti

Rodrigo Fonseca

Today

• Review
– Switching, Multiplexing

• Layering and Encapsulation
• Intro to IP, TCP, UDP

• Extra material: sockets primer

Review: Multiplexing

• What to do when multiple flows must share a
link?

L2

L3

R2

R3

L1 R1

Switch 1 Switch 2

Analogy

• You are running a restaurant. Do you take free
reservations? Do you allow walk-ins?

Fixed Allocations

• Some notion of partitioning
– Frequency, channels, time, …

Fixed Allocation

• Guaranteed allocation
– Great for users, predictable!

• Low space overhead
– Data needs no metadata (e.g., destination, owner)

• Easy to reason about

• Overload: all or nothing
– No graceful degradation

• Waste: allocate for peak, waste for less than peak
• Set up time

– E.g., set up or change schedule

Statistical Multiplexing

• Break information in finite chunks: packets
• Each packet forwarded independently
– Must add metadata to each packet

• Properties
– High utilization (if there is demand)
– Very flexible
– Can be unfair
– Can have unpredictable delays (queues)

Switching

• How to communicate over multiple hops?
• Circuit switching vs Packet switching
– Circuits reserve capacity along the entire path
– Packets are switched independently

Circuit Switching
(Fixed Allocation over Multiple Hops)

• Guaranteed allocation
– Great for users, predictable!

• Low space overhead
– Data needs no metadata (e.g., destination, owner)

• Easy to reason about

• Overload: all or nothing
– No graceful degradation

• Waste: allocate for peak, waste for less than peak
• Set up time

– E.g., set up or change schedule, establish circuit along path
• Failures: must re-establish connection

– For any failures along path

Packet Switching
(Statistical Multiplexing over Multiple Hops)

• Each packet forwarded independently
– Must add metadata to each packet

• Properties
– High utilization (if there is demand)
– Very flexible
– Can be unfair
– Can have unpredictable delays (queues)
– Different paths for each packet

A Taxonomy of networks

��������
�����

�
�����

������
�

��������
�����
�
�����

���
��
��

��������
�����
�
�����

��������������
�

��������
�����
�
�����

�
��
��������
�

��������
�����
�
�����

�
�
��
�

�
�����

	����
�����������
�����

A hybrid of circuits and packets;
headers include a �circuit

identifier� established during a
setup phase

����������������
�����

Traceroute map of the Internet, ~5 million edges, circa 2003. opte.org

Managing Complexity
• Very large number of computers
• Incredible variety of technologies
– Each with very different constraints

• No single administrative entity
• Evolving demands, protocols, applications
– Each with very different requirements!

• How do we make sense of all this?

Layering

• Separation of concerns
– Break problem into separate parts
– Solve each one independently
– Tie together through common interfaces: abstraction
– Encapsulate data from the layer above inside data

from the layer below
– Allow independent evolution

Protocol layering

TCP

IP

Link Layer

UDP

Application

• Can view network encapsulation as a stack

• A network packet from A to D must be put in link
packets A to B, B to C, and C to D

- Each layer produces packets that become the payload of the
lower-layer’s packets

- This is almost correct, but TCP/UDP “cheat” to detect
certain errors in IP-level information like address

Analogy to Delivering a Letter

We did this drawing in class, for delivering a letter from you to a friend in Japan.
There are many layers, addressing schemes, well-defined interfaces, independent
Evolution, abstraction. A protocol is the communication between entities in the same
Level (e.g., you and your friend). Layers use the services of lower layers to provide
services to upper layers. (Of course, this is much more fun when we are drawing live,
hope this starts to get the idea across).

Layers
• Application – what the users sees, e.g., HTTP
• Presentation – crypto, conversion between

representations
• Session – can tie together multiple streams

(e.g., audio & video)
• Transport – demultiplexes, provides reliability,

flow and congestion control
• Network – sends packets, using routing
• Data Link – sends frames, handles media access
• Physical – sends individual bits

OSI Reference Model

One or more nodes
within the network

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

End host

Application

Presentation

Session

Transport

Network

Data link

Physical

Application Protocol

Transport Protocol

Network Protocol

Link-Layer Protocol

Layers, Services, Protocols

Layer N Protocol: rules for communication
within same layer

Layer N-1

Layer N+1

Service: abstraction provided to layer above
API: concrete way of using the service

Layer N uses the services provided by N-1 to
implement its protocol and provide its own services

Protocols

• What do you need to communicate?
– Definition of message formats
– Definition of the semantics of messages
– Definition of valid sequences of messages

• Including valid timings

• Also, who do you talk to? …

Naming/Addressing

• Each node typically has a unique* name
– When that name also tells you how to get to the node, it is

called an address
• Each layer can have its own naming/addressing
• Routing is the process of finding a path to the

destination
– In packet switched networks, each packet must have a

destination address
– For circuit switched, use address to set up circuit

• Special addresses can exist for
broadcast/multicast/anycast

* within the relevant scope

Layers, Services, Protocols

Network

Link

Physical

Transport

Application

Service: move bits to other node across link

Service: move frames to other node across link.
May add reliability, medium access control

Service: move packets to any other node in the network
IP: Unreliable, best-effort service model

Service: multiplexing applications
Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: user-facing application.
Application-defined messages

Challenge
• Decide on how to factor the problem
– What services at which layer?
– What to leave out?
– More on this later (End-to-end principle)

• For example:
– IP offers pretty crappy service, even on top of reliable

links… why?
– TCP: offers reliable, in-order, no-duplicates service.

Why would you want UDP?

IP as the Narrow Waist

• Many applications protocols on top of UDP & TCP
• IP works over many types of networks
• This is the “Hourglass” architecture of the

Internet.
– If every network supports IP, applications run over many

different networks (e.g., cellular network)

…

FTP

TCP UDP

IP

NET1 NET2 NETn

HTTP NV TFTP

Network Layer: Internet Protocol (IP)

• Used by most computer networks today
– Runs over a variety of physical networks, can connect

Ethernet, wireless, modem lines, etc.
• Every host has a unique 4-byte IP address (IPv4)
– E.g., www.cs.brown.edu à128.148.32.110
– The network knows how to route a packet to any address

• Need more to build something like the Web
– Need naming (DNS)
– Interface for browser and server software
– Need demultiplexing within a host: which packets are for

web browser, Skype, or the mail program?

Inter-process Communication

• Talking from host to host is great, but we want
abstraction of inter-process communication

• Solution: encapsulate another protocol within IP

Host

HostHost

Channel

Application

Host

Application

Host

Transport: UDP and TCP
• UDP and TCP most popular protocols on IP

– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two
processes anywhere on the network

– Handles congestion and flow control

Uses of TCP

• Most applications use TCP
– Easier to program (reliability is convenient)
– Automatically avoids congestion (don’t need to worry

about taking down the network
• Servers typically listen on well-know ports:
– SSH: 22
– SMTP (email): 25
– Finger: 79
– HTTP (web): 80

Transport: UDP and TCP
• UDP and TCP most popular protocols on IP

– Both use 16-bit port number & 32-bit IP address
– Applications bind a port & receive traffic on that port

• UDP – User (unreliable) Datagram Protocol
– Exposes packet-switched nature of Internet
– Adds multiplexing on top of IP
– Sent packets may be dropped, reordered, even duplicated

(but there is corruption protection)
• TCP – Transmission Control Protocol

– Provides illusion of reliable ‘pipe’ or ‘stream’ between two
processes anywhere on the network

– Handles congestion and flow control

Internet Layering

• Strict layering not required
– TCP/UDP “cheat” to detect certain errors in IP-level

information like address
– Overall, allows evolution, experimentation

TCP UDP

IP
Network

Application

One more thing…

• Layering defines interfaces well
– What if I get an Ethernet frame, and send it as the

payload of an IP packet across the world?
• Layering can be recursive
– Each layer agnostic to payload!

• Many examples
– Tunnels: e.g.,

VXLAN is ETH over UDP (over IP over ETH
again…)

– Our IP assignment: IP on top of UDP “links”

Example

X

GW ISP
ISP-Y
Switch

Cloud
Edge

Cloud
WAN

Y(us)

Server

Datacenter

④

③

⑥

⑦

③
④

③②①
Gateway

SLB

Server

T2
T1 T0

Outside our networks

Ingress flow
Egress flow

switch/router mirror w/ERSPAN

③②①

VLAN VXLAN
GRE

IP-in-IP ⑤

⑧

Outside flow
switch/router mirror w/GRE

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number Header Format

Headers Added after Mirroring Mirrored Headers

¿ ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
¡ ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
¬ ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
√ ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
ƒ ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
≈ ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
∆ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
« ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

and reaches one of our switches that peers with the ISP (¿).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (¡). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(¬). Once the traffic arrives at the destination datacenter
border (√), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (ƒ,≈), and is redirected to a
VPN gateway, which uses GRE encapsulation (∆, «), before
reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

Our network operators are called up for help. They must
answer two questions in a timely manner: 1) are the packets
dropped in our network? If not, can they provide any pieces
of evidence? 2) if yes, where do they drop? Though packet
drops seem to be an issue with many proposed solutions, the
operators still find the diagnosis surprisingly hard in practice.
Problem 1: many existing tools fail because of their spe-

cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [52], or 3) special hardware features [21, 32, 42, 55]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed for this.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed a system that is similar to to [67], and are able to
capture per-hop traces of a portion of flows.
Problem 2: the basic trace analysis tools fall short for the

complicated problems in practice. Even if network opera-
tors have complete per-hop traces, to recover what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] have fa-
cilities to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.
Problem 3: the ad-hoc solutions are inefficient and usu-

ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be spe-
cific. Second, since the design and implementation have to be
swift (cloud customers are anxiously waiting for mitigation!),

3

Figure 1: The example scenario. We collect per-hop traces in our network (Y and ISP-Y-switch) and do not have the traces outside our
network except the ingress and egress of ISP-Y-switch. The packet format of each numbered network segment is listed in Table 1.

Number Header Format

Headers Added after Mirroring Mirrored Headers

¿ ETHERNET IPV4 ERSPAN ETHERNET IPV4 TCP
¡ ETHERNET IPV4 ERSPAN ETHERNET 802.1Q IPV4 TCP
¬ ETHERNET IPV4 ERSPAN ETHERNET IPV4 UDP VXLAN ETHERNET IPV4 TCP
√ ETHERNET IPV4 GRE IPV4 UDP VXLAN ETHERNET IPV4 TCP
ƒ ETHERNET IPV4 ERSPAN ETHERNET IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
≈ ETHERNET IPV4 GRE IPV4 IPV4 UDP VXLAN ETHERNET IPV4 TCP
∆ ETHERNET IPV4 ERSPAN ETHERNET IPV4 GRE ETHERNET IPV4 TCP
« ETHERNET IPV4 GRE IPV4 GRE ETHERNET IPV4 TCP

Table 1: The packet formats in the example scenario. Different switch models may add different headers before sending out the mirrored
packets, which further complicates the captured packet formats.

and reaches one of our switches that peers with the ISP (¿).
To provide a private network with the customer, the traffic is
first tagged with a customer-specific 802.1Q label (¡). Then,
it is forwarded in our backbone/WAN in a VXLAN tunnel
(¬). Once the traffic arrives at the destination datacenter
border (√), it goes through a load balancer (SLB), which
uses IP-in-IP encapsulation (ƒ,≈), and is redirected to a
VPN gateway, which uses GRE encapsulation (∆, «), before
reaching the destination server. Table 1 lists the corresponding
captured packet formats. Note that beyond the differences
in the encapsulation formats, different switches add different
headers when mirroring packets (e.g., ERSPAN vs GRE).
On the return path, the traffic from the VMs on our servers
is encapsulated with VXLAN, forwarded to the datacenter
border, and routed back to X.

Our network operators are called up for help. They must
answer two questions in a timely manner: 1) are the packets
dropped in our network? If not, can they provide any pieces
of evidence? 2) if yes, where do they drop? Though packet
drops seem to be an issue with many proposed solutions, the
operators still find the diagnosis surprisingly hard in practice.
Problem 1: many existing tools fail because of their spe-

cific assumptions and limitations. As explained in §2.1,
existing tools usually require 1) full access to the network
including end hosts [5, 20]; 2) specific topology, like the
Clos [52], or 3) special hardware features [21, 32, 42, 55]. In
addition, operators often need evidence for “the problem is
not because of” a certain part of the network (in this example,
our network but not ISP or the other cloud network), for prun-
ing the potential root causes. However, most of those tools
are not designed for this.

Since all these tools offer little help in this scenario, net-
work operators have no choice but to enable in-network cap-
turing and analyze the packet traces. Fortunately, we already
deployed a system that is similar to to [67], and are able to
capture per-hop traces of a portion of flows.
Problem 2: the basic trace analysis tools fall short for the

complicated problems in practice. Even if network opera-
tors have complete per-hop traces, to recover what happened
in the network is still a challenge. Records for the same pack-
ets spread across multiple distributed captures, and none of
the well-known trace analyzers such as Wireshark [2] have fa-
cilities to join traces from multiple vantage points. Grouping
them, even for the instances of a single packet across multiple
hops, is surprisingly difficult, because each packet may be
modified or encapsulated by middleboxes multiple times, in
arbitrary combinations.

Packet capturing noise further complicates analysis. Mir-
rored packets can get dropped on their way to collectors or
dropped by the collectors. If one just counts the packet oc-
currence on each hop, the real packet drops may be buried in
mirrored packet drops and remain unidentified. Again, it is
unclear how to address this with existing packet analyzers.

Because of these reasons, network operators resort to de-
veloping ad-hoc tools to handle specific cases, while still
suffering from the capturing noise.
Problem 3: the ad-hoc solutions are inefficient and usu-

ally cannot be reused. It is clear that the above ad-hoc tools
have limitations. First, because they are designed for specific
cases, the header parsing and analysis logic will likely be spe-
cific. Second, since the design and implementation have to be
swift (cloud customers are anxiously waiting for mitigation!),

3

* This is just an example, do not worry about the details, or the specific protocols!

From: Yu et al., A General, Easy to Program and Scalable Framework for Analyzing In-network

Packet Traces, NSDI 2019

Coming Up

• Next class: Physical Layer
• Thu 13th: Snowcast milestones: last commit
– Let us know if you don’t have a slot!

• Pushed some dates:
– Snowcast now due Monday

• We didn’t cover these in class, but these
concepts about the socket API are useful for,
and exercised by, the Snowcast assignment!

Using TCP/IP

• How can applications use the network?
• Sockets API.

– Originally from BSD, widely implemented (*BSD, Linux,
Mac OS X, Windows, …)

– Important do know and do once
– Higher-level APIs build on them

• After basic setup, much like files

Sockets: Communication Between Machines

• Network sockets are file descriptors too
• Datagram sockets: unreliable message delivery
– With IP, gives you UDP
– Send atomic messages, which may be reordered or lost
– Special system calls to read/write: send/recv

• Stream sockets: bi-directional pipes
– With IP, gives you TCP
– Bytes written on one end read on another
– Reads may not return full amount requested, must re-read

System calls for using TCP

Client Server
socket – make socket
bind – assign address, port
listen – listen for clients

socket – make socket
bind* – assign address
connect – connect to listening socket

accept – accept connection

• This call to bind is optional, connect can choose address & port.

Socket Naming
• Recall how TCP & UDP name communication

endpoints
– IP address specifies host (128.148.32.110)
– 16-bit port number demultiplexes within host
– Well-known services listen on standard ports (e.g. ssh – 22,

http – 80, mail – 25, see /etc/services for list)
– Clients connect from arbitrary ports to well known ports

• A connection is named by 5 components
– Protocol, local IP, local port, remote IP, remote port
– TCP requires connected sockets, but not UDP

Dealing with Address Types
• All values in network byte order (Big Endian)

– htonl(), htons(): host to network, 32 and 16 bits
– ntohl(), ntohs(): network to host, 32 and 16 bits
– Remember to always convert!

• All address types begin with family
– sa_family in sockaddr tells you actual type

• Not all addresses are the same size
– e.g., struct sockaddr_in6 is typically 28 bytes, yet

generic struct sockaddr is only 16 bytes
– So most calls require passing around socket length
– New sockaddr_storage is big enough

Client Skeleton (IPv4)Client interface
struct sockaddr_in {

short sin_family; /* = AF_INET */

u_short sin_port; /* = htons (PORT) */

struct in_addr sin_addr;

char sin_zero[8];

} sin;

int s = socket (AF_INET, SOCK_STREAM, 0);

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (13); /* daytime port */

sin.sin_addr.s_addr = htonl (IP_ADDRESS);

connect (s, (sockaddr *) &sin, sizeof (sin));

while ((n = read (s, buf, sizeof (buf))) > 0)

write (1, buf, n);

Server Skeleton (IPv4)Server interface
int s = socket (AF_INET, SOCK_STREAM, 0);

struct sockaddr_in sin;

bzero (&sin, sizeof (sin));

sin.sin_family = AF_INET;

sin.sin_port = htons (9999);

sin.sin_addr.s_addr = htonl (INADDR_ANY);

bind (s, (struct sockaddr *) &sin, sizeof (sin));

listen (s, 5);

for (;;) {

socklen_t len = sizeof (sin);

int cfd = accept (s, (struct sockaddr *) &sin, &len);

/* cfd is new connection; you never read/write s */

do_something_with (cfd);

close (cfd);

}

Using UDP

• Call socket with SOCK_DGRAM, bind as before
• New calls for sending/receiving individual packets

– sendto(int s, const void *msg, int len, int flags,
const struct sockaddr *to, socklen t tolen);

– recvfrom(int s, void *buf, int len, int flags,
struct sockaddr *from, socklen t *fromlen);

– Must send/get peer address with each packet
• Example: udpecho.c
• Can use UDP in connected mode (Why?)
– connect assigns remote address
– send/recv syscalls, like sendto/recvfrom w/o last two

arguments

Uses of UDP Connected Sockets

• Kernel demultiplexes packets based on port
– Can have different processes getting UDP packets from

different peers
• Feedback based on ICMP messages (future lecture)
– Say no process has bound UDP port you sent packet to
– Server sends port unreachable message, but you will only

receive it when using connected socket

Serving Multiple Clients
• A server may block when talking to a client
– Read or write of a socket connected to a slow client

can block
– Server may be busy with CPU
– Server might be blocked waiting for disk I/O

• Concurrency through multiple processes
– Accept, fork, close in parent; child services request

• Advantages of one process per client
– Don’t block on slow clients
– May use multiple cores
– Can keep disk queues full for disk-heavy workloads

Threads
• One process per client has disadvantages:
– High overhead – fork + exit ~100μsec
– Hard to share state across clients
– Maximum number of processes limited

• Can use threads for concurrency
– Data races and deadlocks make programming tricky
– Must allocate one stack per request
– Many thread implementations block on some I/O or

have heavy thread-switch overhead
Rough equivalents to fork(), waitpid(), exit(),
kill(), plus locking primitives.

Non-blocking I/O

• fcntl sets O_NONBLOCK flag on descriptor
int n;
if ((n = fcntl(s, F_GETFL)) >= 0)

fcntl(s, F_SETFL, n|O_NONBLOCK);

• Non-blocking semantics of system calls:
– read immediately returns -1 with errno EAGAIN if no data
– write may not write all data, or may return EAGAIN
– connect may fail with EINPROGRESS (or may succeed, or

may fail with a real error like ECONNREFUSED)
– accept may fail with EAGAIN or EWOULDBLOCK if no

connections present to be accepted

How do you know when to read/write?

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

};

int select (int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

FD_SET(fd, &fdset);

FD_CLR(fd, &fdset);

FD_ISSET(fd, &fdset);

FD_ZERO(&fdset);

Entire program runs in an event loop.

How do you know when to read/write?

• Entire program runs in an event loop

Event-driven servers

• Quite different from processes/threads
– Race conditions, deadlocks rare
– Often more efficient

• But…
– Unusual programming model
– Sometimes difficult to avoid blocking
– Scaling to more CPUs is more complex

