CSCI-1680
Network Layer: Wrapup

Rodrigo Fonseca
Administrivia

- **HW2 Due tonight**
 - 1 late day max, 0 after that
 - Solutions posted tomorrow at the latest, so you can study 😊

- **Midterm on Monday, 6pm, CIT368**
 - Up to what is covered TODAY
Today: IP Wrap-up

- **IP Service models**
 - Unicast, Broadcast, Anycast, Multicast
- **IPv6**
 - Tunnels
Different IP Service Models

• Broadcast: send a packet to all nodes in some subnet. “One to all”
 - 255.255.255.255 : all hosts within a subnet, never forwarded by a router
 - “All ones host part”: broadcast address
 • Host address | (255.255.255.255 & ~subnet mask)
 • E.g.: 128.148.32.143 mask 255.255.255.128
 • ~mask = 0.0.0.127 => Bcast = 128.148.32.255

• Example use: DHCP

• Not present in IPv6
 - Use multicast to link local all nodes group
Anycast

• Multiple hosts may share the same IP address
• “One to one of many” routing
• Example uses: load balancing, nearby servers
 – DNS Root Servers (e.g. f.root-servers.net)
 – Google Public DNS (8.8.8.8)
 – IPv6 6-to-4 Gateway (192.88.99.1)
Anycast Implementation

- Anycast addresses are /32s
- At the BGP level
 - Multiple ASs can advertise the same prefixes
 - Normal BGP rules choose one route
- At the Router level
 - Router can have multiple entries for the same prefix
 - Can choose among many
- Each packet can go to a different server
 - Best for services that are fine with that (connectionless, stateless)
Multicasting

- Send messages to many nodes: “one to many”
- Why do that?
 - Snowcast, Internet Radio, IPTV
 - Stock quote information
 - Multi-way chat / video conferencing
 - Multi-player games
- What’s wrong with sending data to each recipient?
 - Link stress
 - Have to know address of all destinations
Multicast Service Model

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)
 224.x.x.x to 229.x.x.x
 - 28 bits left for group address
LAN Multicast

• Easy on a shared medium
• Ethernet multicast address range:
 – 01:00:5E:00:00:00 to 01:00:5E:7f:ff:ff
• Set low 23 bits of Ethernet address to low bits of IP address
 – (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?
Wide Area: Distribution Trees

• **Source-specific trees:**
 – Spanning tree over recipients, rooted at each source
 – Best for each source

• **Shared trees:**
 – Single spanning tree among all sources and recipients
 – Hard to find one shared tree that’s best for many senders

• **State in routers much larger for source-specific**

How to build these trees is beyond our scope here.
IPv4 Address Exhausution

• Turns out 2^{32} addresses was not a lot
 – (Hint: 7.6B ~ 1.7 x 2^{32} people in the world)

• How bad is the problem?

• What to do?
So what happened when we ran out of IPv4 addresses?

- It’s not completely gone just yet, but close
- Address block fragmentation
 - Secondary market for IPv4
 - E.g., in 2011 Microsoft bought >600K US IPv4 addresses for $7.5M
- NATs galore
 - Home NATs, carrier-grade NATs
IPv6

• Main motivation: IPv4 address exhaustion
• Initial idea: larger address space
• Need new packet format:
 – REALLY expensive to upgrade all infrastructure!
 – While at it, why don’t we fix a bunch of things in IPv4?
• Work started in 1994, basic protocol published in 1998
The original expected plan

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html
The plan in 2011
What was happening (late 2012)
June 6th, 2012
In 2014...

IPv6 usage is increasing more rapidly than predicted just two years ago. Since World IPv6 Launch began in 2012, IPv6 connectivity has more than tripled amongst Google users.

If the trend continues, IPv6 will be the dominant protocol within about four years.
IPv6-ENABLED INTERNET NETWORKS BY REGION

This graph shows the percentage of networks (ASes) that announce an IPv6 prefix for RIR regions, according to RIPE NCC as of 30 April 2014.

- Europe and Middle East (RIPE NCC): 20.16%
- Asia Pacific (APNIC): 20.95%
- Africa (AFRINIC): 14.57%
- Americas (ARIN): 13.45%
- Latin America (LACNIC): 18.65%

In 2014. From: http://www.worldipv6launch.org/infographic/
In 2014.

242 NETWORK OPERATORS
Among them global leaders like AT&T, Comcast, Free Telecom, Internode, KDDI, T-Mobile USA, and Verizon Wireless

20,000+ WEBSITES
Facebook, Google, YouTube, Yahoo, and Wikipedia
+ 14% of the Alexa Top 1000 Websites
With more than 100,000 IPv6 website hits/second

10 HOME ROUTER VENDORS
Including Linksys and D-Link

In 2014. From: http://www.worldipv6launch.org/infographic/
Current Adoption (as seen by Google)

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Native: 24.68% 6to4/Teredo: 0.00% Total IPv6: 24.68% | Sep 29, 2018

Percentage of Alexa Top 1000 websites currently reachable over IPv6

Measurements every hour from AS35425

http://www.worldipv6launch.org/measurements/
Transition is not painless

You may want to begin with our “Where Do I Start?” page where we have guides for:

- Network operators
- Developers
- Content providers / website owners
- Enterprise customers
- Domain name registrars
- Consumer electronics vendors
- Internet exchange point (IXP) operators

• Why do each of these parties have to do something?
IPv6 Key Features

• 128-bit addresses
 – Autoconfiguration

• Simplifies basic packet format through *extension headers*
 – 40-byte base header (fixed)
 – Make less common fields optional

• Security and Authentication
IPv6 Address Representation

• Groups of 16 bits in hex notation

• Two rules:
 – Leading 0’s in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fed4:43ea:1
 – One contiguous group of 0’s can be compacted
 47cd:1244:3422::fed4:43ea:1
IPv6 Addresses

• Break 128 bits into 64-bit network and 64-bit interface
 – Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example

• Types of addresses
 – All 0’s: unspecified
 – 000…1: loopback
 – ff/8: multicast
 – fe8/10: link local unicast
 – fec/10: site local unicast
 – All else: global unicast
<table>
<thead>
<tr>
<th>Ver</th>
<th>Class</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16 octets, 128 bits)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16 octets, 128 bits)</td>
</tr>
</tbody>
</table>
IPv6 Header Fields

• Version: 4 bits, 6
• Class: 8 bits, like TOS in IPv4
• Flow: 20 bits, identifies a flow
• Length: 16 bits, datagram length
• Next Header, 8 bits: …
• Hop Limit: 8 bits, like TTL in IPv4
• Addresses: 128 bits
• What’s missing?
 – No options, no fragmentation flags, no checksum
Design Philosophy

• Simplify handling
 – New option mechanism (fixed size header)
 – No more header length field
• Do less work at the network (why?)
 – No fragmentation
 – No checksum
• General flow label
 – No semantics specified
 – Allows for more flexibility
• Still no accountability

With some content from Scott Shenker
Interoperability

- **RFC 4038**
 - Every IPv4 address has an associated IPv6 address (mapped)
 - Networking stack translates appropriately depending on other end
 - Simply prefix 32-bit IPv4 address with 80 bits of 0 and 16 bits of 1:
 - E.g., ::FFFF:128.148.32.2

- Two IPv6 endpoints must have IPv6 stacks

- Transit network:
 - v6 – v6 – v6 :
 - v4 – v4 – v4 :
 - v4 – v6 – v4 :
 - v6 – v4 – v6 : ✗ !!
IP Tunneling

- Encapsulate an IP packet inside another IP packet
- Makes an end-to-end path look like a single IP hop
IPv6 in IPv4 Tunneling

• Key issues: configuring the tunnels
 – Determining addresses
 – Determining routes
 – Deploying relays to encapsulate/forward/decapsulate

• Several proposals, not very successful
 – 6to4, Teredo, ISATAP
 – E.g., 6to4
 • Deterministic address generation
 • Anycast 192.88.99.1 to find gateway into IPv6 network
 • Drawbacks: voluntary relays, requires public endpoint address
Other uses for tunneling

• Virtual Private Networks
• Use case: access CS network from the outside
 – Set up an encrypted TCP connection between your computer and Brown’s OpenVPN server
 – Configure routes to Brown’s internal addresses to go through this connection
• Can connect two remote sites securely
Extension Headers

- Two types: hop-by-hop and end-to-end
- Both have a next header byte
- Last next header also denotes transport protocol
- Destination header: intended for IP endpoint
 - Fragment header
 - Routing header (loose source routing)
- Hop-by-hop headers: processed at each hop
 - Jumbogram: packet is up to 2^{32} bytes long!
Example Next Header Values

- 0: Hop by hop header
- 1: ICMPv4
- 4: IPv4
- 6: TCP
- 17: UDP
- 41: IPv6
- 43: Routing Header
- 44: Fragmentation Header
- 58: ICMPv6
Fragmentation and MTU

• Fragmentation is supported only on end hosts!
• Hosts should do MTU discovery
• Routers will not fragment: just send ICMP saying packet was too big
• Minimum MTU is 1280-bytes
 – If some link layer has smaller MTU, must interpose fragmentation reassembly underneath
Current State

- IPv6 Deployment picking up
- Most end hosts have dual stacks today (Windows, Mac OSX, Linux, *BSD, Solaris)
- Requires all parties to work!
 - Servers, Clients, DNS, ISPs, all routers
- IPv4 and IPv6 will coexist for a long time
Next time: Transport Layer

- UDP, TCP, Congestion Control
- Application protocols
- ...