CSCI-1680
Network Layer: Inter-domain Routing
Rodrigo Fonseca
Instructor: Michael Markovitch

Based partly on lecture notes by Rob Sherwood, David Mazières, Phil Levis, John Jannotti
Today

- **Last time: Intra-Domain Routing (IGP)**
 - RIP distance vector
 - OSPF link state

- **Inter-Domain Routing (EGP)**
 - Border Gateway Protocol
 - Path-vector routing protocol
Why Inter vs. Intra

• **Why not just use OSPF everywhere?**
 – E.g., hierarchies of OSPF areas?
 – Hint: scaling is not the only limitation

• **BGP is a policy control and information hiding protocol**
 – intra == trusted, inter == untrusted
 – Different policies by different ASs
 – Different costs by different ASs
Types of ASs

• Local Traffic – source or destination in local AS
• Transit Traffic – passes through an AS
• Stub AS
 – Connects to only a single other AS
• Multihomed AS
 – Connects to multiple ASs
 – Carries no transit traffic
• Transit AS
 – Connects to multiple ASs and carries transit traffic
• How to prevent X from forwarding transit between B and C?

• How to avoid transit between CBA?
 – B: BAZ -> X (“B advertises BAZ to X”)
 – B: BAZ -> C ? (=> Y: CBAZ and Y:CAZ)
Choice of Routing Algorithm

• **Constraints**
 - Scaling
 - Autonomy (policy and privacy)

• **Link-state?**
 - Requires sharing of complete information
 - Information exchange does not scale
 - Can’t express policy

• **Distance Vector?**
 - Scales and retains privacy
 - Can’t implement policy
 - Can’t avoid loops if shortest path not taken
 - Count-to-infinity
Path Vector Protocol

• **Distance vector algorithm with extra information**
 – For each route, store the complete path (ASs)
 – No extra computation, just extra storage (and traffic)

• **Advantages**
 – Can make policy choices based on set of ASs in path
 – Can easily avoid loops
BGP - High Level

- Single EGP protocol in use today
- Abstract each AS to a single node
- Destinations are CIDR prefixes
- Exchange prefix reachability with neighbors
 - E.g., “I can reach prefix 128.148.0.0/16 through ASes 44444 3356 14325 11078”
 - May choose to not advertise some paths to some neighbors
- Select a single path by routing policy
- Critical: learn many paths, propagate one
 - Add your ASN to advertised path
BGP Implications

• **Explicit AS Path == Loop free**
 – Except under churn, IGP/EGP mismatch

• **Not all ASs know all paths**

• **Reachability not guaranteed**
 – Decentralized combination of policies

• **AS abstraction -> loss of efficiency**

• **Scaling**
 – 55K ASs
 – 685K+ prefixes
 – ASs with one prefix: 21292
 – Most prefixes by one AS: 5551 (AS4538 ERX-CERNET-BKB - China Education and Research Network Center)

Source: cidr-report 17Oct2017
Why study BGP?

• **Critical protocol: makes the Internet run**
 – Only widely deployed EGP

• **Active area of problems!**
 – Efficiency
 – Cogent vs. Level3: Internet Partition
 – Spammers use prefix hijacking
 – Pakistan accidentally took down YouTube
 – Egypt disconnected for 5 days
BGP Example

AS 1
1.2.0.0/16

Only 1 Router
Per AS (for now)
BGP Example

Only 1 Router
Per AS (for now)
BGP Example

Only 1 Router Per AS (for now)
BGP Example

Only 1 Router Per AS (for now)
BGP Example

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5

Only 1 Router Per AS (for now)
BGP Protocol Details

• **Separate roles of *speakers* and *gateways***
 - Speakers talk BGP with other ASes
 - Gateways are routes that border other ASes
 - Can have more gateways than speakers
 - Speakers know how to reach gateways

• **Speakers connect over TCP on port 179***
 - Bidirectional exchange over long-lived connection
BGP Table Growth

Source: bgp.potaroo.net
BGP Table Growth for v6

Source: bgp.potaroo.net
Integrating EGP and IGP

• **Stub ASs**
 - Border router clear choice for default route
 - Inject into IGP: “any unknown route to border router”

• **Inject specific prefixes in IGP**
 - E.g., Provider injects routes to customer prefix

• **Backbone networks**
 - Too many prefixes for IGP
 - Run internal version of BGP, iBGP
 - All routers learn mappings: Prefix -> Border Router
 - Use IGP to learn: Border Router -> Next Hop
iBGP

AS 1
1.2.0.0/16

AS 2

AS 3

AS 4

AS 5

Only 1 Router Per AS (for now)
iBGP keeps AS consistent

Multiple Peering Points!
BGP Messages

• Base protocol has four message types
 – OPEN – Initialize connection. Identifies peers and must be first message in each direction
 – UPDATE – Announce routing changes (most important message)
 – NOTIFICATION – Announce error when closing connection
 – KEEPALIVE – Make sure peer is alive

• Extensions can define more message types
 – E.g., ROUTE-REFRESH [RFC 2918]
Anatomy of an UPDATE

• Withdrawn routes: list of withdrawn IP prefixes
• Network Layer Reachability Information (NLRI)
 – List of prefixes to which path attributes apply
• Path attributes
 – ORIGIN, AS_PATH, NEXT_HOP, MULTI-EXIT-DISC, LOCAL_PREF, ATOMIC_AGGREGATE, AGGREGATOR, ...
 – Each attribute has 1-byte type, 1-byte flags, length, content
 – Can introduce new types of path attribute – e.g., AS4_PATH for 32-bit AS numbers
Example

- **NLRI**: 128.148.0.0/16
- **AS Path**: ASN 44444 3356 14325 11078
- **Next Hop IP**: same as in RIPv2
- **Knobs for traffic engineering**:
 - Metric, weight, LocalPath, MED, Communities
 - Lots of voodoo
BGP State

- BGP speaker conceptually maintains 3 sets of state
 - **Adj-RIB-In**
 - “Adjacent Routing Information Base, Incoming”
 - Unprocessed routes learned from other BGP speakers
 - **Loc-RIB**
 - Contains routes from Adj-RIB-In selected by policy
 - First hop of route must be reachable by IGP or static route
 - **Adj-RIB-Out**
 - Subset of Loc-RIB to be advertised to peer speakers
• Route views project: http://www.routeviews.org
 – telnet route-views.linx.routeviews.org
 – show ip bgp 128.148.0.0/16 longer-prefixes
• All paths are learned internally (iBGP)
• Not a production device
Next class

• BGP Policy Routing and Security