How to run

- ./net2lnx [...].net (AB.net, ABC.net, loop.net)
 - AB.net
 - Node A localhost
 - Node B 127.0.0.1
 - A <-> B
 - A.lnx:
 - Localhost 5000 (A)
 - 127.0.0.1 5001 192.168.0.1 192.168.0.2 (A <-> B)
 - cslab4g 5002 192.168.0.3 192.168.0.4 (A <-> C)
- ./node A.lnx; ./node B.lnx; [...]
- See it run!
In *node* REPL

- Interfaces : print interfaces
- Routes : print routes
- Send [IP] [Protocol] [Data] : send IP packet
 - If Protocol = 0, prints out packet on the receiving side!
- Up/down [interface] : enable/disables the specified interface
- Quit : quit cleanly!

Basic REPL, parsing .lnx files, and some debugging tools are given in C support code.
Abstraction of Layers

- **Interface**
 - Abstraction of a network interface chip: think of “ip a”

- **Link Layer**
 - Abstraction such that “sendable to nodes without routing”
 - Underlying abstraction of UDP (physical host / port in [file],Inx) shouldn’t be accessible to any upper layers

- **IP Layer**
 - Abstraction of network layer, handling IP packet sending, forwarding, parsing, TTL, ...
 - Relies on upper layer (here, RIP) to resolve routing, so IP doesn’t need to know in detail

- **RIP Layer**
 - Abstraction of RIP running on top of IP
 - Main routing service tool for IP. Should register its handler to IP
Milestone (By Monday, Oct. 9th)

- No coding needed!

- We will ask questions about your design, i.e.:
 - What is your general architecture? How will you divide the work/components?
 - What should happen when (...) ?
 - What threading/mutexes/data structures are you planning to use?
 - ...

- You can reach out to ask specific questions about your design beforehand!
Final (By Monday, Oct 16th)

- **Requirements**
 - Assume Link Layer is 100% secure - no delay, no replication, no loss (maybe except when mtu is low)
 - Will basically test functionality based on (AB.net, ABC.net, loop.net) and see whether up/down/send/prints work correctly

- **Capstone**
 - Fragmentation : MTU changing, Fragmentation & reFragmentation, Reassembly
 - Traceroute : Shows shortest path to any reachable node, up/down changes this
 - Multicast : Sending to multiple receivers with shared “multi_ip”
Questions?

- If you find any bug (or something is fishy) in our reference node, please let us know quickly so that we can fix it for you!

Have fun coding!