
CSCI-1680
Software-Defined Networking

Rodrigo Fonseca

With	
 content	
 from	
 Sco.	
 Shenker,	
 Nick	
 McKeown	

SDN
•  For now: a new paradigm for network management
•  SDN widely accepted as “future of networking”

–  ~1000 engineers at latest Open Networking Summit
–  Commercialized, in production use

•  Controls Google’s WAN; Microsoft and Google cloud offerings
•  VMWare’s main networking product
•  Drives many OpenStack network deployments

–  Strong acceptance in industry and academia

•  An insane level of SDN hype, and backlash…
–  Nicira bought by VMWare in 2012 for $1.2B
–  SDN doesn’t work miracles, merely makes things easier

•  If SDN is the solution, what is the problem?

The Problem with Networking

•  So, what is the problem that justified such
excitement?

•  The management of networks
–  Loosely, everything related to the control plane

•  The real problem: networking as a discipline is
built on weak foundations

Building an Artifact, Not a Discipline

•  Other fields in “systems”: OS, DB, etc.
–  Teach basic principles
–  Are easily managed
–  Continue to evolve

•  Networking:

–  Study of an artifact: the Internet
–  Teach (mostly) big bag of protocols
–  Notoriously difficult to manage
–  Evolves very slowly

•  Networks are much more primitive and less
understood than other computer systems

What is Network Management?

•  Recall the two “planes”

•  Data plane: forwarding packets
–  Based on local forwarding state

•  Control plane: computing that forwarding state
–  Involves coordination with rest of system

•  Broad definition of “network management”:
–  Everything having to do with the control plane

Original goals for the control plane

•  Basic connectivity: route packets to destination
–  Local state computed by routing protocols
–  Globally distributed algorithms

•  Interdomain policy: find policy-compliant
paths
–  Done by fully distributed BGP

•  For long time, these were the only relevant
goals!
–  What other goals are there in running a network?

Also

•  Isolation
•  Access Control
•  Traffic Engineering
•  …

Isolation
•  Want multiple LANs on single physical network

•  Packets on LAN don’t pass through routers
–  But routers used to impose various controls (later)

•  Use VLANs (virtual LANs) tags in L2 headers
–  Controls where broadcast packets go
–  Gives support for logical L2 networks
–  Routers connect these logical L2 networks

•  No universal method for setting VLAN state

Access Control

•  Operators want to limit access to various hosts
–  Don’t let laptops access backend database machines

•  This can be imposed by routers using ACLs
–  ACL: Access control list

•  Example entry in ACL: <header template; drop>

Traffic Engineering

•  Want to avoid persistent overloads on links

•  Choose routes to spread traffic load across links

•  Two main methods:
–  Setting up MPLS tunnels
–  Adjusting weights in OSPF

•  Often done with centralized computation
–  Take snapshot of topology
–  Compute appropriate MPLS/OSPF state
–  Send to network

Control Plane Mechanisms

•  Many different control plane mechanisms

•  Designed from scratch for specific goal

•  Variety of implementations
–  Globally distributed: routing algorithms

–  Manual/scripted configuration: ACLs, VLANs

–  Centralized computation: Traffic engineering

•  Network control plane is a complicated mess!

How Have We Managed To Survive?

•  Net. admins miraculously master this complexity
–  Understand all aspects of networks
–  Must keep myriad details in mind

•  This ability to master complexity is both a blessing
–  …and a curse!

Mastering Complexity versus
Extracting Simplicity

•  The ability to master complexity is valuable
–  But not the same as the ability to extract simplicity

•  Each has its role:
–  When first getting systems to work, master complexity
–  When making system easy to use, extract simplicity

•  You will never succeed in extracting simplicity
–  If you don’t recognize it is a different skill set than

mastering complexity

Iphone	
 photo	
 by	
 Sam	
 Alive	
 	

Linux	
 Observability	
 tools	
 by	
 Brendan	
 Gregg,	
 brendangregg.com	

•  Networking has never made the distinction…
–  And therefore has never made the transition from

mastering complexity to extracting simplicity

•  Still focused on mastering complexity
–  Networking “experts” are those that know all the

details

•  Extracting simplicity lays intellectual
foundations
– This is why networking has weak foundation
–  We are still building the artifact, not the discipline

Mastering Complexity versus
Extracting Simplicity

Number of published Internet Standards

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

7,000	

1969	
 1979	
 1989	
 1999	
 2009	

Graph	
 from	
 Nick	
 McKeown	

Cisco Stock Price

1991	
 1999	

200x	

Google	
 Finance	

Why make the transition

•  Complexity has increased to “unmanageable”
levels

•  Consider datacenters:
–  100,000s machines, 10,000s switches
–  1000s of customers

•  Each with their own logical networks: ACLs, VLANs, etc

•  Way beyond what we can handle
–  Leads to brittle, ossified configurations
–  Probably inefficient too

An Example Transition: Programming

•  Machine languages: no abstractions
–  Had to deal with low-level details
–  Mastering complexity was crucial

•  Higher-level languages: OS and other abstractions
–  File system, virtual memory, abstract data types, ...

•  Modern languages: even more abstractions
–  Object orientation, garbage collection,...

Abstractions key to extracting simplicity

“The Power of Abstraction”

“Modularity based on abstraction
 is the way things get done”

 − Barbara Liskov

Abstractions è Interfaces è Modularity

What About Networking Abstractions?

•  Consider the data and control planes separately

•  Different tasks, so naturally different
abstractions

Abstractions for Data Plane: Layers
Applications	

…built on…	

…built on…	

…built on…	

…built on…	

Reliable (or unreliable) transport	

Best-effort global packet delivery	

Best-effort local packet delivery	

Physical transfer of bits	

The Importance of Layering

•  Decomposed delivery into basic components

•  Independent, compatible innovation at each
layer
–  Clean “separation of concerns”
–  Leaving each layer to solve a tractable problem

•  Responsible for the success of the Internet!
–  Rich ecosystem of independent innovation

Control Plane Abstractions

?

(Too) Many Control Plane Mechanisms

•  Control Plane: mechanisms without abstraction
–  Too many mechanisms, not enough functionality

•  Variety of goals, no modularity:
–  Routing: distributed routing algorithms
–  Isolation: ACLs, VLANs, Firewalls,…
–  Traffic engineering: adjusting weights, MPLS,…

	

Finding Control Plane Abstractions

How do you find abstractions?

•  You first decompose the problem….

•  …and define abstractions for each subproblem

•  So what is the control plane problem?

28	

Task: Compute forwarding state:

•  Consistent with low-level hardware/software
–  Which might depend on particular vendor

•  Based on entire network topology
–  Because many control decisions depend on topology

•  For all routers/switches in network
–  Every router/switch needs forwarding state

	

•  Design one-off mechanisms that solve all three

–  A sign of how much we love complexity

•  No other field would deal with such a problem!

•  They would define abstractions for each
subtask

•  …and so should we!

Our current approach

Example
•  OSPF:

–  5% for Djikstra’s algorithm,
–  95% to find and maintain the state of the network

Separate Concerns with Abstractions

1.  Be compatible with low-level hardware/software
 Need an abstraction for general forwarding model

2.  Make decisions based on entire network
 Need an abstraction for network state

3.  Compute configuration of each physical device

 Need an abstraction that simplifies configuration

Abs#1: Forwarding Abstraction

•  Express intent independent of implementation
–  Don’t want to deal with proprietary HW and SW

•  OpenFlow is current proposal for forwarding
–  Standardized interface to switch
–  Configuration in terms of flow entries:

•  <header fields, action>

•  Design details concern exact nature of:
–  Header matching
–  Allowed actions

Two Important Facets to OpenFlow

•  Switches accept external control messages
–  Not closed, proprietary boxes

•  Standardized flow entry format
–  So switches are interchangeable

34	

Abs#2: Network State Abstraction

•  Abstract away various distributed mechanisms

•  Abstraction: global network view
–  Annotated network graph provided through an API

•  Implementation: “Network Operating System”
–  Runs on servers in network (“controllers”)
–  Replicated for reliability

•  Information flows both ways
–  Information from routers/switches to form “view”
–  Configurations to routers/switches to control forwarding

Network Operating System

•  Think of it as a centralized link-state algorithm

•  Switches send connectivity info to controller

•  Controller computes forwarding state
–  Some control program that uses the topology as input

•  Controller sends forwarding state to switches

•  Controller is replicated for resilience
–  System is only “logically centralized”

36	

Network of Switches and/or Routers

Distributed algorithm running between neighbors
Complicated task-specific distributed algorithm

Traditional Control Mechanisms

Control Program

Software Defined Network (SDN)

Network OS

Global Network View

routing, access control, etc.

SoRware	

Very	
 simple	
 	

hardware	

Control Program

Your final Project

Floodlight

Global Network View

routing, access control, etc.

SoRware	

Very	
 simple	
 	

Hardware*	

*Emulated	
 network	
 in	
 Mininet	

Major Change in Paradigm

•  Control program:
–  Configuration = Function(view)

•  Control mechanism now program using NOS
API

•  Not a distributed protocol, just a graph
algorithm

41	

Abs#3: Specification Abstraction

•  Control mechanism expresses desired behavior
–  Whether it be isolation, access control, or QoS

•  It should not be responsible for implementing that
behavior on physical network infrastructure
–  Requires configuring the forwarding tables in each switch

•  Proposed abstraction: abstract view of network
–  Abstract view models only enough detail to specify goals
–  Will depend on task semantics

	

Simple Example: Access Control

Global	

Network	

View	

Abstract	

Network	

View	

A	

B	

A	

B	

Routing

•  Look at graph of network

•  Compute routes

•  Give to SDN platform, which passes on to
switches

44	

Access Control

•  Control program decides who can talk to who

•  Pass this information to SDN platform

•  Appropriate ACL flow entries are added to
network
–  In the right places (based on the topology)

45	

Network OS

Global Network View

Abstract Network View

Control Program Virtualization Layer

Network Virtualization

Clean Separation of Concerns

•  Control program: express goals on abstract view
–  Driven by Operator Requirements

•  Virtualization Layer: abstract view çè global view
–  Driven by Specification Abstraction for particular task

•  NOS: global view çè physical switches
–  API: driven by Network State Abstraction
–  Switch interface: driven by Forwarding Abstraction

47	

Network OS

Global Network View

Abstract Network View

Control Program

Network Virtualization

SDN: Layers for the Control Plane

Abstractions for Control Plane

…built on…	

…built on…	

…built on…	

Expression of Intent	

Abstract Network View	

Global Network View	

Physical Topology	

Abstractions Don’t Remove Complexity

•  NOS, Virtualization are complicated pieces of code

•  SDN merely localizes the complexity:
–  Simplifies interface for control program (user-specific)
–  Pushes complexity into reusable code (SDN platform)

•  This is the big payoff of SDN: modularity!
–  The core distribution mechanisms can be reused
–  Control programs only deal with their specific function

•  Note that SDN separates control and data planes
–  SDN platform does control plane, switches do data plane

What This Really Means

Separation of Control/Data Plane

•  Today, routers implement both
– They forward packets
–  And run the control plane software

•  SDN networks
–  Data plane implemented by switches

•  Switches act on local forwarding state
–  Control plane implemented by controllers

•  All forwarding state computed by SDN platform

•  This is a technical change, with broad
implications

52	

Changes

•  Less vendor lock-in
–  Can buy HW/SF from different vendors

•  Changes are easier
–  Can test components separately

•  HW has to forward
•  Can simulate controller
•  Can do verification on logical policy

–  Can change topology and policy independently
–  Can move from private net to cloud and back!
–  Greater rate of innovation

Computer Industry

Specialized
Operating
System

Specialized
Hardware

Specialized
Applications

App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	

Open Interface

Linux	
 Mac	

OS	

Windows	

(OS)	
 or or

Open Interface

Microprocessor

Dell Stock Price

Google	
 Finance	

$42	

$14	

2005	
 2013	

Switch Chips

Networking Industry

Specialized
Operating System

Specialized
Hardware

Specialized
Features

App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	
 App	

Open Interface

Open Interface

Control	
 	

Plane	
 	
 1	

Control	
 	

Plane	
 	
 2	

NOX	
 Beacon	
 ONIX	
 POX	
 ONO
S	

Floo
d	

light	

Trem
a	
 ODL	
 Ryu	

Current Status of SDN

•  SDN widely accepted as “future of networking”
–  Commercial use inter-datacenter (Google), intra-

datacenter (Microsoft)
–  Network virtualization is current killer app

•  VMWare’s NSX, OpenStack network management

•  Insane level of SDN hype, and backlash…
–  SDN doesn’t work miracles, merely makes things easier

•  Open Networking Foundation (100+ members)
–  Board: Google, Yahoo, Verizon, DT, Msoft, F’book, NTT
–  Members: Cisco, Juniper, HP, Dell, Broadcom, IBM,…

•  Watch out for upcoming chapters!

To learn more…

•  Scott Shenker’s talk “The Future of
Networking, and the Past of Protocols”
–  http://www.youtube.com/watch?v=YHeyuD89n1Y
–  Keynote at the 2011 Open Networking Summit

•  NEC SDN Reading List
–  http://www.nec-labs.com/~lume/sdn-reading-list.html

•  The Road to SDN
–  http://queue.acm.org/detail.cfm?id=2560327

OpenFlow

•  Simple API between switches and centralized
controller

•  Basic abstraction: flow match / action
–  E.g., if a packet matches this IP dest, ETH protocol

type, forward on port 3
–  If a packet matches ARP, send to controller
–  It a packet comes from evil IP address, drop

