CSCI-1680
Network Layer: Wrapup

Rodrigo Fonseca
Administrivia

• Homework 2 is due tomorrow
 – So we can post solutions before the midterm!

• Exam on Tuesday
 – All content up to today
 – Questions similar to the homework
 – Book has some exercises, samples on the course web page (from previous years)
Today: IP Wrap-up

• IP Service models
 – Unicast, Broadcast, Anycast, Multicast

• IPv6
 – Tunnels
Different IP Service Models

• **Broadcast**: send a packet to *all* nodes in some subnet. “One to all”

 – 255.255.255.255: all hosts within a subnet, *never* forwarded by a router

 – “All ones host part”: broadcast address

 • Host address | (255.255.255.255 & ~subnet mask)

 • E.g.: 128.148.32.143 mask 255.255.255.128

 • \(~mask = 0.0.0.127 \Rightarrow Bcast = 128.148.32.255\)

• **Example use: DHCP**

• **Not present in IPv6**

 – Use multicast to link local all nodes group
Anycast

• Multiple hosts may share the same IP address
• “One to one of many” routing
• Example uses: load balancing, nearby servers
 – DNS Root Servers (e.g. f.root-servers.net)
 – Google Public DNS (8.8.8.8)
 – IPv6 6-to-4 Gateway (192.88.99.1)
Anycast Implementation

- Anycast addresses are /32s
- At the BGP level
 - Multiple ASs can advertise the same prefixes
 - Normal BGP rules choose one route
- At the Router level
 - Router can have multiple entries for the same prefix
 - Can choose among many
- Each packet can go to a different server
 - Best for services that are fine with that
 (connectionless, stateless)
Multicast

• **Send messages to many nodes: “one to many”**

• **Why do that?**
 – Snowcast, Internet Radio, IPTV
 – Stock quote information
 – Multi-way chat / video conferencing
 – Multi-player games

• **What’s wrong with sending data to each recipient?**
 – Link stress
 – Have to know address of all destinations
Multicast Service Model

- Receivers join a multicast group G
- Senders send packets to address G
- Network routes and delivers packets to all members of G
- Multicast addresses: class D (start 1110)
 224.x.x.x to 229.x.x.x
 - 28 bits left for group address
LAN Multicast

- Easy on a shared medium
- Ethernet multicast address range:
 - 01:00:5E:00:00:00 to 01:00:5E:7f:ff:ff
- Set low 23 bits of Ethernet address to low bits of IP address
 - (Small problem: 28-bit group address -> 23 bits)

How about on the Internet?
Use Distribution Trees

• **Source-specific trees:**
 – Spanning tree over recipients, rooted at each source
 – Best for each source

• **Shared trees:**
 – Single spanning tree among all sources and recipients
 – Hard to find one shared tree that’s best for many senders

• **State in routers much larger for source-specific**
Source vs Shared Trees
Building the Tree: Host to Router

• Nodes tell their local routers about groups they want to join
 – IGMP, Internet Group Management Protocol (IPv4)
 – MLD, Multicast Listener Discovery (IPv6)

• Router periodically polls LAN to determine memberships
 – Hosts are not required to leave, can stop responding
Building the Tree across networks

- Routers maintain multicast routing tables
 - Multicast address -> set of interfaces, or
 - <Source, Multicast address> -> set of interfaces

- Critical: only include interfaces where there are downstream recipients
Practical Considerations

• Multicast protocols end up being quite complex
• Introduce a lot of router state
• Turned off on most routers
• Mostly used within domains
 – In the department: Ganglia monitoring infrastructure
 – IPTV on campus
• Alternative: do multicast in higher layers
IPv6

• Main motivation: IPv4 address exhaustion
• Initial idea: larger address space
• Need new packet format:
 – REALLY expensive to upgrade all infrastructure!
 – While at it, why don’t we fix a bunch of things in IPv4?
• Work started in 1994, basic protocol published in 1998
The original expected plan

From: http://www.potaroo.net/ispcol/2012-08/EndPt2.html
The plan in 2011
What is really happening

- IP4 Pool Size
- Size of the Internet
- IP6 Transition - Dual Stack
- IP6 Deployment
Current Adoption (as seen by Google)

IPv6 Key Features

• 128-bit addresses
 – Autoconfiguration

• Simplifies basic packet format through extension headers
 – 40-byte base header (fixed)
 – Make less common fields optional

• Security and Authentication
IPv6 Address Representation

• Groups of 16 bits in hex notation

• Two rules:
 – Leading 0’s in each 16-bit group can be omitted
 47cd:1244:3422:0:0:fef4:43ea:1
 – One contiguous group of 0’s can be compacted
 47cd:1244:3422::fef4:43ea:1
IPv6 Addresses

• Break 128 bits into 64-bit network and 64-bit interface
 – Makes autoconfiguration easy: interface part can be derived from Ethernet address, for example

• Types of addresses
 – All 0’s: unspecified
 – 000…1: loopback
 – ff/8: multicast
 – fe8/10: link local unicast
 – fec/10: site local unicast
 – All else: global unicast
IPv6 Header

<table>
<thead>
<tr>
<th>Ver</th>
<th>Class</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destination</td>
</tr>
</tbody>
</table>
IPv6 Header Fields

• Version: 4 bits, 6
• Class: 8 bits, like TOS in IPv4
• Flow: 20 bits, identifies a flow
• Length: 16 bits, datagram length
• Next Header, 8 bits: …
• Hop Limit: 8 bits, like TTL in IPv4
• Addresses: 128 bits
• What’s missing?
 – No options, no fragmentation flags, no checksum
Design Philosophy

• **Simplify handling**
 – New option mechanism (fixed size header)
 – No more header length field

• **Do less work at the network (why?)**
 – No fragmentation
 – No checksum

• **General flow label**
 – No semantics specified
 – Allows for more flexibility

• **Still no accountability**

With some content from Scott Shenker
Interoperability

• **RFC 4038**
 – Every IPv4 address has an associated IPv6 address (mapped)
 – Networking stack translates appropriately depending on other end
 – Simply prefix 32-bit IPv4 address with 80 bits of 0 and 16 bits of 1:
 – E.g., ::FFFF:128.148.32.2

• **Two IPv6 endpoints must have IPv6 stacks**

• **Transit network:**
 – v6 – v6 – v6 : ✔
 – v4 – v4 – v4 : ✔
 – v4 – v6 – v4 : ✔
 – v6 – v4 – v6 : ❌
IP Tunneling

- Encapsulate an IP packet inside another IP packet
- Makes an end-to-end path look like a single IP hop
IPv6 in IPv4 Tunneling

- **Key issues: configuring the tunnels**
 - Determining addresses
 - Determining routes
 - Deploying relays to encapsulate/forward/decapsulate

- **Several proposals, not very successful**
 - 6to4, Teredo, ISATAP
 - E.g., 6to4
 - Deterministic address generation
 - Anycast 192.88.99.1 to find gateway into IPv6 network
 - Drawbacks: voluntary relays, requires public endpoint address
Other uses for tunneling

- Virtual Private Networks
- Use case: access CS network from the outside
 - Set up an encrypted TCP connection between your computer and Brown’s OpenVPN server
 - Configure routes to Brown’s internal addresses to go through this connection
- Can connect two remote sites securely
Extension Headers

- Two types: hop-by-hop and end-to-end
- Both have a next header byte
- Last next header also denotes transport protocol
- Destination header: intended for IP endpoint
 - Fragment header
 - Routing header (loose source routing)
- Hop-by-hop headers: processed at each hop
 - Jumbogram: packet is up to 2^{32} bytes long!
Example Next Header Values

- 0: Hop by hop header
- 1: ICMPv4
- 4: IPv4
- 6: TCP
- 17: UDP
- 41: IPv6
- 43: Routing Header
- 44: Fragmentation Header
- 58: ICMPv6
Fragmentation and MTU

- Fragmentation is supported only on end hosts!
- Hosts should do MTU discovery
- Routers will not fragment: just send ICMP saying packet was too big
- Minimum MTU is 1280-bytes
 - If some link layer has smaller MTU, must interpose fragmentation reassembly underneath
Current State

• IPv6 Deployment has been slow
• Most end hosts have dual stacks today
 (Windows, Mac OSX, Linux, *BSD, Solaris)
• 2008 Google study:
 – Less than 1% of traffic globally
• Requires all parties to work!
 – Servers, Clients, DNS, ISPs, all routers
• IPv4 and IPv6 will coexist for a long time
Next time: Midterm

• After that, transport layer and above!
 – UDP, TCP, Congestion Control
 – Application protocols
 – ...