CSCI-1680
Network Layer:
IP & Forwarding

Rodrigo Fonseca

Instructor: Nicholas DeMarinis

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti

Administrivia

* IP out today. Your job:
— Find partners, get setup with Github

— Implement IP forwarding and DV routing
— Get started TODAY ©

* HW1 due today

Today

* Network layer: Internet Protocol (v4)

* Forwarding
— Addressing
— Fragmentation
— ARP
— DHCP
— NATSs

* Next 2 classes: Routing

Internet Protocol Goal

* How to connect everybody?
— New global network or connect existing networks?

Glue lower-level networks together:
— allow packets to be sent between any pair or hosts

Wasn’t this the goal of switching?

Network 1 (Ethernet)

Network 4
(point-to-point)

Network 3 (FDDI)

Internetworking Challenges

* Heterogeneity
— Different addresses

— Different service models

— Different allowable packet sizes
* Scaling

* Congestion control

How would you design such a protocol?

* Circuits or packets?
— Predictability
* Service model
— Reliability, timing, bandwidth guarantees
* Any-to-any
— Finding nodes: naming, routing
— Maintenance (join, leave, add/remove links,...)

— Forwarding: message formats

IP’s Decisions

* Packet switched
— Unpredictability, statistical multiplexing

e Service model

— Lowest common denominator: best effort,
connectionless datagram

* Any-to-any
— Common message format
— Separated routing from forwarding
— Naming: uniform addresses, hierarchical organization

— Routing: hierarchical, prefix-based (longest prefix
matching)

— Maintenance: delegated, hierarchical

A Bit of History

* Packet switched networks: Arpanet’s IMPs
— Late 1960’s
— RFC 1, 1969!

— Segmentation, framing, routing, reliability,
reassembly, primitive flow control

* Network Control Program (NCP)

— Provided connections, flow control

— Assumed reliable network: IMPs

— Used by programs like telnet, mail, file transfer
* Wanted to connect multiple networks

— Not all reliable, different formats, etc...

TCP/IP Introduced

Vint Cerf, Robert Kahn
Replace NCP
Initial design: single protocol providing a
unified reliable pipe
— Could support any application

Different requirements soon emerged, and the
two were separated

— IP: basic datagram service among hosts

— TCP: reliable transport

— UDP: unreliable multiplexed datagram service

An excellent read

David D. Clark, “The design Philosophy of the
DARPA Internet Protocols”, 1988

* Primary goal: multiplexed utilization of existing
interconnected networks

* Other goals:

— Communication continues despite loss of networks or
gateways

— Support a variety of communication services

— Accommodate a variety of networks

— Permit distributed management of its resources
— Be cost effective

— Low effort for host attachment

— Resources must be accountable

Internet Protocol

* IP Protocol running on all hosts and routers
* Routers are present in all networks they join
* Uniform addressing

* Forwarding/Fragmentation

* Complementary:
— Routing, Error Reporting, Address Translation

H1

TCP R1 R2 R3

IP P P
D BVARNE AN I
ETH ETH FDDI FDDI PPP PPP ETH

e _ —

IP Protocol

* Provides addressing and forwarding

— Addressing is a set of conventions for naming nodes
in an IP network

— Forwarding is a local action by a router: passing a
packet from input to output port

* IP forwarding finds output port based on
destination address

— Also defines certain conventions on how to handle
packets (e.g., fragmentation, time to live)

* Contrast with routing

— Routing is the process of determining how to map
packets to output ports (topic of next two lectures)

Service Model

* Connectionless (datagram-based)

* Best-effort delivery (unreliable service)
— packets may be lost
— packets may be delivered out of order
— duplicate copies of packets may be delivered

— packets may be delayed for a long time

e Jt’s the lowest common denominator
— A network that delivers no packets fits the bill!

— All these can be dealt with above IP (if probability of
delivery is non-zero...)

IP v4 packet format

0 1 2 3
01234567390123456789012345678901
vers |hdrlen TOS Total Length
Identification 0 [F)l};/l Fragment offset
TTL Protocol hdr checksum

Source IP address

Destination IP address

Options Padding

Data

IP header details

* Forwarding based on destination address

TTL (time-to-live) decremented at each hop

— Originally was in seconds (no longer)
— Mostly prevents forwarding loops
— Other cool uses...

* Fragmentation possible for large packets

— Fragmented in network if crossing link w/ small frame
— MF: more fragments for this IP packet
— DF: don’t fragment (returns error to sender)

* Following IP header is “payload” data
— Typically beginning with TCP or UDP header

Other fields

Version: 4 (IPv4) for most packets, there’s also 6

* Header length: in 32-bit units (>5 implies options)
* Type of service (won’t go into this)

Protocol identifier (TCP: 6, UDP: 17, ICMP: 1, ...)

Checksum over the header

Format of IP addresses

* Globally unique (or made seem that way)

— 32-bit integers, read in groups of 8-bits:
128.148.32.110

* Hierarchical: network + host
* Originally, routing prefix embedded in address

7 24
() 0 | Network Host I
14 16
(b) 1710 Network Host I
21 8
(c)
171110 Network Host

— Class A (8-bit prefix), B (16-bit), C (24-bit)

— Routers need only know route for each network

Forwarding Tables

Exploit hierarchical structure of addresses:
need to know how to reach networks, not hosts

Network Next Address

212.31.32.* 0.0.0.0
18.% * * 212.31.32.5

128.148.*.* 212.31.32.4
Default 212.31.32.1

Keyed by network portion, not entire address

Next address should be local: router knows
how to reach it directly* (we’ll see how soon)

Classed Addresses

* Hierarchical: network + host
— Saves memory in backbone routers (no default routes)
— Originally, routing prefix embedded in address
— Routers in same network must share network part
* Inefficient use of address space
— Class C with 2 hosts (2/255 = 0.78% efficient)
— Class B with 256 hosts (256/65535 = 0.39% efficient)
— Shortage of IP addresses
— Makes address authorities reluctant to give out class B’s
Still too many networks
— Routing tables do not scale

Routing protocols do not scale

CIDR: Classless Inter-Domain Routing

Problems: routing table growth, granularity of
allocation

Idea: assign blocks of contiguous networks to
nearby networks

Represent blocks with a single pair

— (first network address, count)
Restrict block sizes to powers of 2
Use a bit mask (CIDR mask) to identify block size

Address aggregation: reduce routing tables

Obtaining IP Addresses

* Blocks of IP addresses allocated hierarchically
— ISP obtains an address block, may subdivide
[SP: 128.35.16/20 10000000 00100011 00010000 00000000
Client 1: 128.35.16/22 10000000 00100011 00010000 00000000
Client 2: 128.35.20/22 10000000 00100011 00010100 00000000
Client 3: 128.35.24/21 10000000 00100011 00011000 00000000

* Global allocation: ICANN, /8’s (ran out!)

* Regional registries: ARIN, RIPE, APNIC, LACNIC,
AFRINIC

CIDR Forwarding Table

Network Next Address

212.31.32/24 0.0.0.0
18/8 212.31.32.5
128.148/16 212.31.32.4

128.148.128/17 212.31.32.8
0/0 212.31.32.1

Example

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15
] 128.96.34.1
| —
Hi1 [RI
128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.139

=

128.96.34.129

H3
= @ R H2
== 128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H1-> H2: H2.ip & Hl.mask != H1.subnet => no direct path

Network Subnet Mask Next Address

128.96.34.0 255.255.255.128 128.96.34.1

R1’s Forwarding Table
128.96.34.128 255.255.255.128 128.96.34.130

128.96.33.0 255.255.255.0 128.96.34.129

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15
m 128.96.34.1
—

- CSE

128.96.34.130 Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

178.96.34.129 128.96.34.139

H3 E—

. R2

] — H2
— 128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

Translating IP to lower level addresses
or... How to reach these local addresses?

* Map IP addresses into physical addresses
— E.g., Ethernet address of destination host
— or Ethernet address of next hop router

* Techniques

— Encode physical address in host part of IP address (IPv6)
— Each network node maintains lookup table (IP->phys)

ARP - address resolution protocol

* Dynamically builds table of IP to physical
address bindings for a local network

* Broadcast request if IP address not in table

* Alllearn IP address of requesting node
(broadcast)

* Target machine responds with its physical
address

 Table entries are discarded if not refreshed

ARP Ethernet frame format

0 8 16 31

Hardware type = 1 ProtocolType = 0x0800

HLen = 48 PLen = 32 Operation

SourceHardwareAddr (bytes 0-3)

SourceHardwareAddr (bytes 4-5) | SourceProtocolAddr (bytes 0-1)

SourceProtocolAddr (bytes 2-3) | TargetHardwareAddr (bytes 0-1)

TargetHardwareAddr (bytes 2-5)

TargetProtocolAddr (bytes 0-3)

* Why include source hardware address?

Obtaining Host IP Addresses - DHCP

* Networks are free to assign addresses within block to
hosts

* Tedious and error-prone: e.g., laptop going from CIT
to library to coffee shop

* Solution: Dynamic Host Configuration Protocol
— Client: DHCP Discover to 255.255.255.255 (broadcast)
— Server(s): DHCP Offer to 255.255.255.255 (why broadcast?)
— Client: choose offer, DHCP Request (broadcast, why?)
— Server: DHCP ACK (again broadcast)

* Result: address, gateway, netmask, DNS server

Network Address Translation (NAT)

Despite CIDR, it’s still difficult to allocate
addresses (232 is only 4 billion)

We'll talk about IPv6 later
NAT “hides” entire network behind one address
Hosts are given private addresses

Routers map outgoing packets to a free
address/port

Router reverse maps incoming packets

Problems?

Fragmentation & Reassembly

 Each network has maximum transmission unit
(MTU)

* Strategy
— Fragment when necessary (MTU < size of datagram)
— Source tries to avoid fragmentation (why?)
— Re-fragmentation is possible
— Fragments are self-contained datagrams
— Delay reassembly until destination host

— No recovery of lost fragments

Fragmentation Example

A A
H1 R1 R2 R3 HS8
ETH [IP|(1400) FDDI|IP{(1400) PPP |IP|(512) ETH [IP|(512)

PPP |IP|(512) ETH |IP|(512)
PPP |IP|(376) ETH [IP|(376)

* Ethernet MTU is 1,500 bytes
 PPP MTU is 576 bytes

— R2 must fragment IP packets to forward them

Start of header
Ident = x 0| Offset=0

Fragmentation Example (cont)

Rest of header
(a)

1400 data bytes

Start of header
Ident = x 1| Offset=0

* IP addresses plus ident field —
identify fragments of same packet 512 data bytes

* MF (more fragments bit) is 1 in all ’ S
but last fragment dent=x | | [1] Offset - 64

Rest of header

* Fragment offset multiple of 8
bytes
— Multiply offset by 8 for fragment Start of header
" . e Ident = x 0| Offset = 128
position original packet

512 data bytes

Rest of header

376 data bytes

Internet Control Message Protocol (ICMP)

* Echo (ping)

* Redirect

* Destination unreachable (protocol, port, or host)
 TTL exceeded

* Checksum failed

* Reassembly failed

* Can’t fragment

* Many ICMP messages include part of packet that
triggered them

* See http://www.iana.org/assignments/icmp-
parameters

ICMP message format

0 1 2 3
0123456738390123456789012345673901

20-byte IP header
(protocol = 1—ICMP)

Type Code Checksum

depends on type/code

Example: Time Exceeded

0 1 2 3
01234567890123456739012345678901

20-byte IP header
(protocol = 1—ICMP)

Type =11 Code Checksum

unused

IP header + first 8 payload bytes
of packet that caused ICMP to be generated

* Code usually 0 (TTL exceeded in transit)

e Discussion: traceroute

Example: Can’t Fragment

* Sent if DF=1 and packet length > MTU
* What can you use this for?
* Path MTU Discovery

— Can do binary search on packet sizes

— But better: base algorithm on most common MTUs

Coming Up

* Routing: how do we fill the routing tables?
— Intra-domain routing: Tuesday, 10/4

— Inter-domain routing: Thursday, 10/6

%

=
S

il
9
S

/BlE|

arp -n
Address
172.17.44.1
172.17.44.25
172.17.44.6
172.17.44.5

ip route

127.0.0.0/8 via 127.0.0.1 dev lo

HwWtype
ether
ether
ether
ether

Example

HWaddress

00:12:80:01:34:55
10:dd:b1:89:d5:f3
b8:27:eb:55:¢c3:45
00:1b:21:22:e0:22

172.17.44.0/24 dev enp7s0@ proto kernel scope link
default via 172.17.44.1 dev etho src 172.17.44.22 metric 204

\ENE|{

Flags Mask
C

C
C
C

Iface
etho
etho
etho
etho

src 172.17.44.22 metric 204

