
CSCI-1680
Link Layer Reliability

!"#$%&'"()*+&,-&*$.)/($&-,)$#&0+&1"23%&4"536($#7&893*&:$23#7&;,9-&;"--,))3

Rodrigo Fonseca

! Last time
" Physical layer: encoding, modulation
" Link layer framing

! Today
" Getting frames across: reliability, performance

Sending Frames Across

Transmission Delay

Propagation Delay
Latency

Sending Frames Across

Throughput: bits / s
…

…

Which matters most, bandwidth or delay?

! How much data can we send during one RTT?
! E.g., send request, receive file

Ti
m

e

! For small transfers, latency more important,
for bulk, throughput more important

Performance Metrics

! Throughput - Number of bits received/unit of time
" e.g.10Mbps

! Goodput - Usefulbits received per unit of time
! Latency – How long for message to cross network

" Process + Queue + Transmit + Propagation
! Jitter – Variation in latency

Latency

! Processing
" Per message, small, limits throughput
" e.g. or 120μs/pkt

! Queue
" Highly variable, offered load vs outgoing b/w

! Transmission
" Size/Bandwidth

! Propagation
" Distance/Speed of Light

!

100Mb
s

"
pkt

1500B
"
B
8b

8,333pkt /s

Reliable Delivery

! Several sources of errors in transmission
! Error detection can discard bad frames
! Problem: if bad packets are lost, how can we

ensure reliable delivery?
" Exactly-once semantics = at least once + at most once

At Least Once Semantics

! How can the sender know packet arrived at
leastonce?
" Acknowledgments + Timeout

! Stop and Wait Protocol
" S: Send packet, wait
" R: Receive packet, send ACK
" S: Receive ACK, send next packet
" S: No ACK, timeout and retransmit

Sender Receiver

Frame 0

ACK 0
Ti

m
e Frame 1

ACK 1

Frame 0

ACK 0

É

Sender Receiver

Frame

ACK

T
im

eo
u

t

T
im

e

Sender Receiver

Frame

ACK

T
im

eo
u

t

Frame

ACK

T
im

eo
u

t

Sender Receiver

Frame

ACKT
im

eo
u

t
Frame

ACKT
im

eo
u

t

Sender Receiver

Frame

T
im

eo
u

t

Frame

ACK

T
im

eo
u

t

(a) (c)

(b) (d)

Stop and Wait Problems

! Duplicate data
! Duplicate acks
! Slow (channel idle most of the time!)
! May be difficult to set the timeout value

Sender Receiver

Frame 0

ACK 0
Ti

m
e Frame 1

ACK 1

Frame 0

ACK 0

É

Duplicate data: adding sequence numbers

At Most Once Semantics

! How to avoid duplicates?
" Uniquely identify each packet
" Have receiver and sender remember

! Stop and Wait: add 1 bit to the header
" Why is it enough?

Going faster: sliding window protocol

! Still have the problem of keeping pipe full
" Generalize approach with > 1-bit counter
" Allow multiple outstanding (unACKed) frames
" Upper bound on unACKed frames, called window

Sender Receiver

T
im

e

…
…

How big should the window be?

Sender Receiver

T
im

e

…
…

! How many bytes can we transmit in one RTT?
" BW B/s x RTT s => “Bandwidth-Delay Product”

Maximizing Throughput

! Can view network as a pipe
" For full utilization want bytes in flight ≥ bandwidth × delay
" But don’t want to overload the network (future lectures)

! What if protocol doesn’t involve bulk transfer?
" Get throughput through concurrency – service multiple

clients simultaneously

Bandwidth-delay

Bandwidth

Delay

¥ Can view network as a pipe
- For full utilization want bytes in ßight ! bandwidth" delay

- But donÕt want tooverload the network (future lectures)

¥ What if protocol doesnÕt involve bulk transfer?
- Get throughput through concurrencyÑservice multiple

clients simultaneously

Sliding Window Sender
! Assign sequence number (SeqNum) to each frame
! Maintain three state variables

" send window size (SWS)
" last acknowledgment received (LAR)
" last frame sent (LFS)

! Maintain invariant: LFS – LAR ≤ SWS
! Advance LAR when ACK arrives
! Buffer up to SWS frames

≤ SWS

LAR LFS

… …

Sliding Window Receiver
! Maintain three state variables:

" receive window size (RWS)
" largest acceptable frame (LAF)
" last frame received (LFR)

! Maintain invariant: LAF – LFR ≤ RWS
! Frame SeqNum arrives:

" if LFR < SeqNum ≤ LAF, accept
" if SeqNum ≤ LFR or SeqNum > LAF, discard

! Send cumulativeACKs

! RWS

LFR LAF

É É

Tuning Send Window

! How big should SWS be?
" “Fill the pipe”

! How big should RWS be?
" 1 ≤ RWS ≤ SWS

! How many distinct sequence numbers needed?

Example

! SWS = RWS = 5. Are 6 seq #s enough?
! Sender sends 0,1,2,3,4
! All acks are lost
! Sender sends 0,1,2,3,4 again
! …
! What are the possible views of the sender and

receiver?

Tuning Send Window

! How big should SWS be?
" “Fill the pipe”

! How big should RWS be?
" 1 ≤ RWS ≤ SWS

! How many distinct sequence numbers needed?
" SWS can’t be more than half of the space of valid

seq#s.

Summary

! Want exactly once
" At least once: acks + timeouts + retransmissions
" At most once: sequence numbers

! Want efficiency
" Sliding window

Error Detection

! Idea: have some codes be invalid
" Must add bits to catch errors in packet

! Sometimes can also correcterrors
" If enough redundancy
" Might have to retransmit

! Used in multiple layers
! Three examples today:

" Parity
" Internet Checksum
" CRC

Simplest Schemes

! Repeat frame n times
" Can we detect errors?
" Can we correct errors?

! Voting
" Problem: high redundancy : n

! Example: send each bit 3 times
" Valid codes: 000 111
" Invalid codes : 001 010 011 100 101 110
" Corrections : 0 0 1 0 1 1

Parity

! Add a parity bit to the end of a word
! Example with 2 bits:

" Valid: 000 011 011 110
" Invalid: 001 010 010 111
" Can we correct?

! Can detect odd number of bit errors
" No correction

In general

! Hamming distance: number of bits that are
different
" E.g.: HD (00001010, 01000110) = 3

! If min HD between valid codewords is d:
" Can detect d-1 bit error
" Can correct ⌊(d-1)/2⌋ bit errors

! What is d for parity and 3-voting?

2-D Parity

! Add 1 parity bit for each 7 bits
! Add 1 parity bit for each bit position across the

frame)
" Can correct single-bit errors
" Can detect 2- and 3-bit errors, most 4-bit errors

! Find a 4-bit error that can’t be corrected

1011110 1

1101001 0

0101001 1

1011111 0

0110100 1

0001110 1

1111011 0

Parity
bits

Parity
byte

Data

IP Checksum
! Fixed-length code

" n-bit code should capture all but 2-n fraction of errors
! Why?

" Trick is to make sure that includes all commonerrors
! IP Checksum is an example

" 1’s complement of 1’s complement sum of every 2 bytes

uint16 cksum(uint16 * buf , int count) {
uint32 sum = 0;
while (count --)

if ((sum += * buf ++) & 0xffff0000) // carry
sum = (sum & 0xffff) + 1;

return ~(sum & 0xffff);
}

How good is it?

! 16 bits not very long: misses how many errors?
" 1 in 216, or 1 in 64K errors

! Checksum does catch all 1-bit errors
! But not all 2-bit errors

" E.g., increment word ending in 0, decrement one
ending in 1

! Checksum also optional in UDP
" All 0s means no checksums calculated
" If checksum word gets wiped to 0 as part of error, bad

news

From rfc791 (IP)

ÒThis is a simple to compute checksum and
experimental evidence indicates it is adequate, but it

is provisional and may be replaced by a CRC
procedure, depending on further experience.Ó

CRC – Error Detection with Polynomials

! Goal: maximize protection, minimize bits
! Consider message to be a polynomial in Z2[x]

" Each bit is one coefficient
" E.g., message 10101001 -> m(x) = x7 + x5+ x3 + 1

! Can reduce one polynomial modulo another
" Let n(x) = m(x)x3. Let C(x) = x3 + x2 + 1.
" n(x) “mod” C(x) : r(x)
" Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x) and

degree of r(x) < degree of C(x)
" Analogous to taking 11 mod 5 = 1

Polynomial Division Example

! Just long division, but addition/subtraction is XOR

Generator 1101
11111001
10011010000 Message
1101

1001
1101

1000
1101

1011
1101
1100
1101

1000
1101

101 Remainder

CRC
! Select a divisor polynomial C(x), degree k

" C(x) should be irreducible– not expressible as a product of
two lower-degree polynomials in Z2[x]

! Add k bits to message
" Let n(x) = m(x)xk (add k 0’s to m)
" Compute r(x) = n(x) mod C(x)
" Compute n'(x) = n(x) – r(x) (will be divisible by C(x))

(subtraction is XOR, just set k lowest bits to r(x)!)
! Checking CRC is easy

" Reduce message by C(x), make sure remainder is 0

Why is this good?

! Suppose you send m(x), recipient gets m’(x)
" E(x) = m’(x) – m(x) (all the incorrect bits)
" If CRC passes, C(x) divides m’(x)
" Therefore, C(x) must divide E(x)

! Choose C(x) that doesn’t divide any common
errors!
" All single-bit errors caught if xk, x0 coefficients in C(x) are 1
" All 2-bit errors caught if at least 3 terms in C(x)
" Any odd number of errors if last two terms (x + 1)
" Any error burst less than length k caught

Common CRC Polynomials

! Polynomials not trivial to find
" Some studies used (almost) exhaustive search

! CRC-8: x8 + x2 + x1 + 1
! CRC-16: x16 + x15 + x2 + 1
! CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 +

x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1
! CRC easily computable in hardware

An alternative for reliability

! Erasure coding
" Assume you can detect errors
" Code is designed to tolerate entire missing frames

! Collisions, noise, drops because of bit errors
" Forward error correction

! Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

! Property:
" From K source frames, produce B > K encoded frames
" Receiver can reconstruct source with any K’ frames,

with K’ slightly larger than K
" Some codes can make B as large as needed, on the fly

LT Codes

! Luby Transform Codes
" Michael Luby, circa 1998

! Encoder: repeat B times
1. Pick a degree d
2. Randomly select d source blocks. Encoded block tn=

XOR or selected blocks

LT Decoder

! Find an encoded block tn with d=1
! Set sn = tn

! For all other blocks tn’ that include sn ,
set tn’=tn’ XOR sn

! Delete sn from all encoding lists
! Finish if

1. You decode all source blocks, or
2. You run out out blocks of degree 1

Next class

! Link Layer II
" Ethernet: dominant link layer technology

! Framing, MAC, Addressing

" Switching

