CSCI-1680
Security

Chen Avin

Based on lecture notes by Scott Shenker and Mike Freedman and Rodrigo Fonseca



Today’s Lecture

» Classes of attacks

« Basic security requirements

« Simple cryptographic methods

« Cryptographic toolkit (Hash, Digital Signature, ...)
 Certificate Authorities

« SSL/HTTPS




Basic Requirements for Secure
Communication

Availability: Will the network deliver data?
— Infrastructure compromise, DD0S

Authentication: Who is this actor?

— Spoofing, phishing

Integrity: Do messages arrive in original form?
Confidentiality: Can adversary read the data?
— Sniffing, man-in-the-middle

Provenance: Who is responsible for this data?
— Forging responses, denying responsibility

— Not who sent the data, but who created it



Other Desirable Security Properties

« Authorization: is actor allowed to do this action?
— Access controls

« Accountability/Attribution: who did this activity?
« Audit/Forensics: what occurred in the past?
— A broader notion of accountability/attribution

 Appropriate use: is action consistent with policy?
— E.g., no spam; no games during business hours; etc.

 Freedom from traffic analysis: can someone tell
when | am sending and to whom?

 Anonymity: can someone tell | sent this packet?




Internet’s Design: Insecure

Designed for simplicity in a naive era
“On by default” design

Readily available zombie machines
Attacks look like normal traffic

Internet’s federated operation obstructs
cooperation for diagnosis/mitigation



Eavesdropping - Message Interception
(Attack on Confidentiality)

 Unauthorized access to information
« Packet sniffers and wiretappers
* lllicit copying of files and programs

DR

Eavesdropper




Eavesdropping Attack: Example

* tcpdump with promiscuous network
Interface

— On a switched network, what can you see?

 What might the following traffic types
reveal about communications?
— DNS lookups (and replies)
— |IP packets without payloads (headers only)
— Payloads




Integrity Attack - Tampering

« Stop the flow of the message
« Delay and optionally modify the message
 Release the message again

DR

Perpetrator




Authenticity Attack - Fabrication

* Unauthorized assumption of other’s identity

* Generate and distribute objects under this
identity

® o

Masquerader: from A




Attack on Availability

* Destroy hardware (cutting fiber) or
software

 Modify software in a subtle way
« Corrupt packets in transit

\|
’|

Blatant denial of service (DoS):
— Crashing the server
— Overwhelm the server (use up its resource)




Basic Forms of Cryptography




Confidentiality through Cryptography

« Cryptography: communication over insecure
channel in the presence of adversaries
« Studied for thousands of years

« Central goal: how to encode information so that an
adversary can't extract it ...but a friend can

« General premise: a key Is required for decoding
— Give it to friends, keep it away from attackers

« Two different categories of encryption
— Symmetric: efficient, requires key distribution

— Asymmetric (Public Key): computationally expensive,
but no key distribution problem




Principles of Ciphers

Encryption

Message _- key _ Mesgage

in plaintext il in plaintext
»
Y ™, =
Encrypt D=—— Pl w
Decryptior;

Message Key Message

in ciphertext in ciphertext

Insecure network

* Known plaintext attack
.. * Ciphetext only attack
oo * Chosen plaintext attack




A
\$

0
9

/BIE|

= [Ely

Block Ciphers

Plaintext block 3

Plaintext block 2

Plaintext block 1

Plaintext block 0

Encryption
function

Initialization vector

(For block 0 only)

Cipher block chaining (CBC).

= Blocks of ciphertext



Symmetric Key Encryption

Same key for encryption and decryption

— Both sender and receiver know key

— But adversary does not know key

For communication, problem is key distribution
— How do the parties (secretly) agree on the key?

What can you do with a huge key? One-time pad
— Huge key of random bits

To encrypt/decrypt: just XOR with the key!

— Provably secure! .... provided:
* You never reuse the key ... and it really is random/unpredictable

— Spies actually use these




Using Symmetric Keys

e Both the sender and the recelver use the
same secret keys

Plaintext Plaintext

Internet Decrypt with

secret key

Encrypt with
secret key

Ciphertext ¥




Asymmetric Encryption (Public Key)

« |dea: use two different keys, one to encrypt (e)
and one to decrypt (d)
— Akey pair

* Crucial property: knowing e does not give
away d

 Therefore e can be public: everyone knows it!

 |f Alice wants to send to Bob, she fetches
Bob’s public key (say from Bob’s home page)
and encrypts with it
— Alice can’t decrypt what she’s sending to Bob ...
— ... but then, neither can anyone else (except Bob)




Public Key / Asymmetric Encryption

« Sender uses receiver’s public key
— Advertised to everyone

 Recelver uses complementary private key
— Must be kept secret

Plaintext Plaintext

A

. Internet
Encrypt with

public key

Decrypt with
private key

Ciphertext 5




Works in Reverse Direction Too!

« Sender uses his own private key
 Receiver uses complementary public key

« Allows sender to prove he knows private
key

Plaintext Plaintext

Internet .
Encrypt with
private key

Ciphertext

Decrypt with
public key




Realizing Public Key Cryptography

 Invented in the 1970s

— Revolutionized cryptography
— (Was actually invented earlier by British intelligence)
« How can we construct an
encryption/decryption algorithm with
public/private properties?
— Answer: Number Theory
« Most fully developed approach: RSA
— Rivest / Shamir / Adleman, 1977; RFC 3447

— Based on modular multiplication of very large integers
— Very widely used (e.g., SSL/TLS for https)




Cryptographic Toolkit




Cryptographic Toolkit

Confidentiality: Encryption
Integrity: ?
Authentication: ?
Provenance: ?




Integrity: Cryptographic Hashes

Sender computes a digest of message m, I.e.,
H(m)

— H() is a publicly known hash function (e.g., MD5, SHA-1)
Send m in any manner

Send digest d = H(m) to receiver in a secure
way:

— Using another physical channel

— Using encryption (why does this help?)

Upon receiving m and d, receiver re-computes
H(m) to see whether result agrees with d



Operation of Hashing for Integrity

Plaintext corrupted msg Plaintext

Digest Internet
(MD5)

digest




Cryptographically Strong Hashes

« Hard to find collisions
— Adversary can't find two inputs that produce same hash

— Someone cannot alter message without modifying
digest

— Can succinctly refer to large objects

 Hard to invert
— Given hash, adversary can’t find input that produces it

— Can refer obliguely to private objects (e.g., passwords)
« Send hash of object rather than object itself




Effects of Cryptographic Hashing

Input Hash sum

Hash DFCD3454 BBEA788A

Fox —» ction | 751A696C 24D97009
CA992D17

The red fox Hash 52ED879E 70F71D92

runs across | ¢ . i~ | 6EB69570 0S8E03CE4
the ice CAG945D3

The red fox Hash 46042841 935C7FB0

walks across — ¢ . tion ™| 9158585A B94AE214
the ice 26EB3CEA




Cryptographic Toolkit

Confidentiality: Encryption
Integrity: Cryptographic Hash
Authentication: ?
Provenance: ?




Public Key Authentication

 Each side need only to
know the other side’s
public key

— No secret key need be shared

* A encrypts anonce
(random number) x using
B’s public key

B proves it can recover X

« A can authenticate itself to
B in the same way

=it Pubj Cs)

X




Cryptographic Toolkit

Confidentiality: Encryption
Integrity: Cryptographic Hash
Authentication: Decrypting nonce
Provenance: ?




Digital Signatures

« Suppose Alice has published public key K¢

* |f she wishes to prove who she is, she can
send a message x encrypted with her
private key Kg
— Therefore: anyone w/ public key K¢ can recover X,

verify that Alice must have sent the message
— It provides a digital signature

— Alice can’t deny later deny it = non-repudiation




RSA Crypto & Signhatures, con’t

Alice
| will Sign ‘/h
pay $500 (Encrypt)
Alice's
+ private key

DFCD3454

BBEA788A
Bob v
| will Verify /@_er—l
pay $500 (Decrypt) Alice's

public key



Key Pre Distribution

* Pre-Distribution of Symmetric Keys
— Public Key Authentication Protocols

Alice Bob

A=Alice
8 B=Bob
Ta Ter B Tx=Timestamp from X's clock
| =Digitally signed using
X X’s private key
X =Encrypted using
X’s public key
T » : =New session key

A public-key authentication protocol that does not depend on synchronization.
Alice checks her own timestamp against her own clock, and likewise for Bob.




Summary of Our Crypto Toolkit

 If we can securely distribute a key, then

— Symmetric ciphers (e.qg., AES) offer fast,
presumably strong confidentiality

* Public key cryptography does away with
problem of secure key distribution
— But not as computationally efficient

— Often addressed by using public key crypto to
exchange a session key

— And not guaranteed secure
* but major result if not




Summary of Our Crypto Toolkit, con’t

« Cryptographically strong hash functions provide
major building block for integrity (e.g., SHA-1)
— As well as providing concise digests

— And providing a way to prove you know something (e.g.,
passwords) without revealing it (non-invertibility)

— But: worrisome recent results regarding their strength

* Public key also gives us signatures
— Including sender non-repudiation

 Turns out there’s a crypto trick based on similar
algorithms that allows two parties who don’t
know each other’s public key to securely
negotiate a secret key even in the presence of
eavesdroppers




PKls and HTTPS




Public Key Infrastructure (PKI)

Public key crypto is very powerful ...

... but the realities of tying public keys to
real world identities turn out to be quite
hard

PKI: Trust distribution mechanism
— Authentication via Digital Certificates

Trust doesn’t mean someone is honest,
just that they are who they say they are...



Managing Trust

« The most solid level of trust is rooted in our
direct personal experience

— E.g., Alice’s trust that Bob is who they say they are
— Clearly doesn’t scale to a global network!

* In its absence, we rely on delegation
— Alice trusts Bob’s identity because Charlie attests to it

— .... and Alice trusts Charlie




Managing Trust, con’t

* Trust is not particularly transitive
— Should Alice trust Bob because she trusts Charlie ...
— ... and Charlie vouches for Donna ...
— ... and Donna says Eve is trustworthy ...
— ... and Eve vouches for Bob’s identity?

 Two models of delegating trust

— Rely on your set of friends and their friends
« “Web of trust” -- e.g., PGP

— Rely on trusted, well-known authorities (and their
minions)
« “Trusted root” -- e.g., HTTPS




PKI Conceptual Framework

Trusted-Root PKI:

— Basis: well-known public key serves as root of a hierarchy
— Managed by a Certificate Authority (CA)

To publish a public key, ask the CA to digitally sign
a statement indicating that they agree (“certify”)
that it is indeed your key

— This is a certificate for your key (certificate = bunch of bits)
* Includes both your public key and the signed statement

— Anyone can verify the signature

Delegation of trust to the CA

— They'd better not screw up (duped into signing bogus key)
— They'd better have procedures for dealing with stolen keys
— Note: can build up a hierarchy of signing



Putting It All Together: HTTPS

« Steps after clicking on
https://www.amazon.com

 https = “Use HTTP over SSL/TLS”
— SSL = Secure Socket Layer

— TLS = Transport Layer Security Application
» Successor to SSL, and compatible with it (e.g., HTTP)
— RFC 4346 Secure Transport

Layer

* Provides security layer

(authentication, encryption) on e

top of TCP P

— Falrly transparent to the app Link




HTTPS Connection (SSL/TLS), con’t

Browser (client)
connects via TCP to
Amazon’ s HTTPS

server
Client sends over list

of crypto protocols it
supports

Server picks protocols
to use for this session

Server sends over its
certificate

(all of this is in the clear)

Browser Amazon

&
| s
| ACk
He]]O I
S4

((TLS + R SuppOrt

SS +
L+RSA+ AL, 28+
\/\MD 5) ) Or
Or .
, AV
‘ﬁsi\xfg araEs12875H
W
-1 k@ of dat@




Inside the Server’s Certificate

Name associated with cert (e.g., Amazon)
Amazon’s public key

A bunch of auxiliary info (physical address, type of
cert, expiration time)

URL to revocation center to check for revoked keys
Name of certificate’s signatory (who signed it)

A public-key signature of a hash (MD5) of all this
— Constructed using the signatory’s private RSA key



Validating Amazon’s ldentity

 Browser retrieves cert belonging to the signatory
— These are hardwired into the browser
e |f it can’t find the cert, then warns the user that

site has not been verified
— And may ask whether to continue

— Note, can still proceed, just without authentication
« Browser uses public key in signatory’s cert to

decrypt signature
— Compares with its own MD5 hash of Amazon’s cert

« Assuming signature matches, now have high
confidence it’s indeed Amazon ...

— ... assuming signatory is trustworthy




HTTPS Connection (SSL/TLS), con’t

Browser constructs a Browser

random session key K

Browser encrypts K using
Amazon’s public key

Browser sends E(K, KA piic) )

to server
Browser dlspla%

All subsequent

communication encrypted

w/ symmetric cipher using

key K

— E.g., client can authenticate
using a password

Syl
w

E(,Oass
Worg
N

K)

Amazon




Next Class

e Some new trends, Software-Defined
Networking

e Second-to-last class!




