
CSCI-1680

Application Layer

Chen Avin

Based on “Computer Networking: A Top Down Approach” - 6th edition

Administrivia

• Next Week:

– HW3 Out

– TCP Milestone II

• Coming week: application layer

Application layer

• Principles of network applications

• Web and HTTP

• Electronic Mail

– SMTP, POP3, IMAP

• DNS

• P2P applications

5

Application Layer

Our goals:

• conceptual,

implementation

aspects of network

application protocols

– transport-layer service

models

– client-server paradigm

– peer-to-peer paradigm

• learn about protocols by

examining popular

application-level protocols

• HTTP

• SMTP / POP3 / IMAP

• DNS

Some network apps

• e-mail

• web

• text messaging

• remote login

• P2P file sharing

• multi-user network

games

• streaming stored

video (YouTube, Hulu,

Netflix)

• voice over IP (e.g.,

Skype)

• real-time video

conferencing

• social networking

• search

• …

• …

7

The Web Is Dead.

Long Live the Internet Wired September 2010

http://www.wired.com/magazine/
http://www.wired.com/magazine/

Creating a network app

write programs that:

• run on (different) end
systems

• communicate over network

• e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

• network-core devices do not
run user applications

• applications on end systems
allows for rapid app
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

9

Application architectures

• Client-server

• Peer-to-peer (P2P)

• Hybrid of client-server and P2P

Client-server architecture

server:
• always-on host

• permanent IP address

• data centers for scaling

clients:
• communicate with server

• may be intermittently
connected

• may have dynamic IP
addresses

• do not communicate directly
with each other

client/server

Pure P2P architecture

• no always-on server

• arbitrary end systems

directly communicate

• peers request service from

other peers, provide service

in return to other peers

– self scalability – new

peers bring new service

capacity, as well as new

service demands

• peers are intermittently

connected and change IP

addresses

– complex management

peer-peer

12

Hybrid of client-server and P2P

Skype

– voice-over-IP P2P application

– centralized server: finding address of remote party:

– client-client connection: direct (not through server)

Instant messaging

– chatting between two users is P2P

– centralized service: client presence
detection/location

• user registers its IP address with central server
when it comes online

• user contacts central server to find IP
addresses of buddies

Processes communicating

process: program

running within a host

• within same host, two

processes communicate

using inter-process

communication (defined

by OS)

• processes in different

hosts communicate by

exchanging messages

client process: process
that initiates
communication

server process: process
that waits to be contacted

 aside: applications with P2P

architectures have client

processes & server

processes

clients, servers

Sockets

• process sends/receives messages to/from its socket

• socket analogous to door

– sending process shoves message out door

– sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

App-layer protocol defines

• types of messages
exchanged,

– e.g., request, response

• message syntax:

– what fields in messages
& how fields are
delineated

• message semantics

– meaning of information
in fields

• rules for when and how
processes send & respond
to messages

open protocols:

• defined in RFCs

• allows for

interoperability

• e.g., HTTP, SMTP

proprietary protocols:

• e.g., Skype

What transport service does an app need?

data integrity

• some apps (e.g., file
transfer, web transactions)
require 100% reliable data

transfer
• other apps (e.g., audio) can

tolerate some loss

timing

• some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

throughput
• some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

• other apps (“elastic apps”)
make use of whatever
throughput they get

security

• encryption, data integrity,

…

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s

msec

yes, few secs

yes, 100’s

msec

yes and no

Internet transport protocols services

TCP service:
• reliable transport between

sending and receiving
process

• flow control: sender won’t
overwhelm receiver

• congestion control:
throttle sender when
network overloaded

• does not provide: timing,
minimum throughput
guarantee, security

• connection-oriented:
setup required between
client and server
processes

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP

• no encryption

• cleartext passwds sent
into socket traverse
Internet in cleartext

SSL

• provides encrypted
TCP connection

• data integrity

• end-point
authentication

SSL is at app layer

• Apps use SSL libraries,
which “talk” to TCP

SSL socket API

• cleartext passwds sent
into socket traverse
Internet encrypted

Web and HTTP

First, a review…

• web page consists of objects

• object can be HTML file, JPEG image, Java

applet, audio file,…

• web page consists of base HTML-file which

includes several referenced objects

• each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext
transfer protocol

• Web’s application layer
protocol

• client/server model
– client: browser that

requests, receives,
(using HTTP
protocol) and
“displays” Web
objects

– server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

HTTP overview (continued)

uses TCP:
• client initiates TCP

connection (creates socket)
to server, port 80

• server accepts TCP
connection from client

• HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

• TCP connection closed

HTTP is
“stateless”

• server maintains no
information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP connections

non-persistent HTTP

• at most one object

sent over TCP

connection

– connection then

closed

• downloading multiple

objects required

multiple connections

persistent HTTP

• multiple objects can

be sent over single

TCP connection

between client,

server

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP

connection to HTTP server

(process) at

www.someSchool.edu on port

80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket.

Message indicates that client

wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to 10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP (cont.)

5. HTTP client receives response

message containing html file,

displays html. Parsing html file,

finds 10 referenced jpeg

objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Application Layer 2-27

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:

• one RTT to initiate TCP
connection

• one RTT for HTTP request
and first few bytes of HTTP
response to return

• file transmission time

• non-persistent HTTP
response time =

 2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

non-persistent HTTP

issues:

• requires 2 RTTs per object

• OS overhead for each TCP

connection

• browsers often open parallel

TCP connections to fetch

referenced objects

persistent HTTP:

• server leaves connection

open after sending response

• subsequent HTTP messages

between same client/server

sent over open connection

• client sends requests as

soon as it encounters a

referenced object

• as little as one RTT for all

the referenced objects

• With/without pipelining

HTTP request message

• two types of HTTP messages: request, response

• HTTP request message:

– ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

 lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lf version URL

cr lf value header field name

cr lf value header field name

~ ~ ~ ~

cr lf

entity body ~ ~ ~ ~

Uploading form input

POST method:

• web page often

includes form input

• input is uploaded to

server in entity body

URL method:

• uses GET method

• input is uploaded in

URL field of request

line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/1.0:

• GET

• POST

• HEAD

– asks server to leave

requested object out

of response

HTTP/1.1:

• GET, POST, HEAD

• PUT

– uploads file in entity

body to path

specified in URL field

• DELETE

– deletes file specified

in the URL field

HTTP response message

status line

(protocol

status code

status phrase)

header

 lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

HTTP response status codes

200 OK

– request succeeded, requested object later in this msg

301 Moved Permanently

– requested object moved, new location specified later in this
msg (Location:)

400 Bad Request

– request msg not understood by server

404 Not Found

– requested document not found on this server

505 HTTP Version Not Supported

• status code appears in 1st line in server-to-
client response message.

• some sample codes:

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

