CSCI-1680 - Computer Networks

Network Layer:
Intra-domain Routing

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

Today

* Intra-Domain Routing
* Next class: Inter-Domain Routing

Interplay between routing, forwarding

routing algorithm routing algorithm determines
00 end-end-path through network

forwarding table determines
local forwarding at this router

local forwarding table
dest address |output link

address-range 1
address-range 2
address-range 3
address-range 4

IP destination address in

arriving packet’ :header
Slide from: “Computer setworking% Down Approach” - 6t edition

Routing

* Routing is the process of updating
forwarding tables

— Routers exchange messages about routers or
networks they can reach

— Goal: find optimal route for every destination

— ... or maybe a good route, or any route
(depending on scale)

* Challenges
— Dynamic topology
— Decentralized
— Scale

Scaling Issues

* Every router must be able to forward
based on any destination |IP address
— Given address, it needs to know next hop
— Nailve: one entry per address
— There would be 108 entries!

« Solutions
— Hierarchy (many examples)

— Address aggregation

» Address allocation is very important (should mirror
topology)

— Default routes

IP Connectivity

For each destination address, must either:
— Have prefix mapped to next hop in forwarding table
— Know “smarter router” — default for unknown prefixes

Route using longest prefix match, default is
prefix 0.0.0.0/0

Core routers know everything — no default

Manage using notion of Autonomous
System (AS)

Internet structure, 1990

@ NSFENET backbone o
BARRNET MidNet
regional Westnet e
regional —
) GO T () (B

« Several independent organizations

« Hierarchical structure with single
backbone

regional

Internet structure, today

Large corporation

“Consumer” ISP

corporation

 Multiple backbones, more arbitrary
structure

Autonomous Systems

 Correspond to an administrative domain
— AS's reflect organization of the Internet
— E.g., Brown, large company, etc.
— ldentified by a 16-bit number

« Goals
— AS’s choose their own local routing algorithm
— AS’s want to set policies about non-local routing

— AS’s need not reveal internal topology of their
network

AS-level

INTERNET GRAPH

»
@b
0 R3S
%)
Z \9\;(‘, Peering:
2, 52 «’Y" OutDegree
K e (e o® 1845 157
7473(Singapore Tel.) o
SN by iy p S‘oc\‘“a, AT
1 3904 (Hutchison 4637(Reach Vie™
4766 (Korea Tel) oY b) { 6 (React) ® “.‘“’DE 1614 137
T ; : e
7 ACOM v
3786 C 0485(5C)} Osto,NO
10026(Asia Netcom) ST rankfurt,DE
WL '_ EEED 1383 117
| 2 Brussels, BE
3320(Deutsche Telekom) £8928(Interoute) . |Paris, FR 1153 98
11299(TeliaNet) 702(MCl) | London, UK
’ 1273(CW),
RN : 786(JANET) K5459(London X)
3356(Level:3) | 922 78
701 (UUNET) 55174(Cogent) Dublin, g
ool N v
s obal Crossin S es.
9(Qwest) e 7/ 4 X 8es, PT 691 58
N \
\ 6461 (ADovenn p S0 ‘
4323(Time Warner) Vdr,
. = 2828 (XO) 461 39
s S k 230 19
0
pov W

Inter and Intra-domain routing

 Routing organized in two levels

* Intra-domain routing
— Complete knowledge, strive for optimal paths
— Scale to ~100 networks
— Today

* Inter-domain routing
— Aggregated knowledge, scale to Internet

— Dominated by policy

* E.g., route through X, unless X is unavailable, then route
through Y. Never route traffic from X to Y.

— Policies reflect business agreements, can get
complex

— Next lecture

Intra-Domain Routing

Network as a graph

« Nodes are routers

* Assign cost to each edge
— Can be based on latency, b/w, queue length, ...

* Problem: find lowest-cost path between
nodes

— Each node individually computes routes

Basic Algorithms

 Two classes of intra-domain routing
algorithms

« Distance Vector
— Requires only local state
— Harder to debug
— Can suffer from loops

* Link State
— Each node has global view of the network
— Simpler to debug
— Requires global state

Distance Vector

Local routing algorithm

Each node maintains a set of triples
— <Destination, Cost, NextHop>

Exchange updates with neighbors
— Periodically (seconds to minutes)
— Whenever table changes (triggered update)

Each update is a list of pairs
— <Destination, Cost>

Update local table if receive a “better” route
— Smaller cost

Refresh existing routes, delete if time out

Calculating the best path

Bellman-Ford equation

e Let:
— D_(b) denote the current best distance from ato b
— c¢(a,b) denote the cost of a link from ato b

Then D,(y) = min,(c(X,z) + D,(y))
Routing messages contain D
D is any additive metric

— e.g, number of hops, queue length, delay

— log can convert multiplicative metric into an additive
one (e.g., probability of failure)

DV Example

B’s routing table

Next Hop

A 1 A

@ MM m O O
w N NN P
> > > O O

Adapting to Failures

G, &6

F-G fails
F sets distance to G to infinity, propagates
A sets distance to G to infinity

A receives periodic update from C with 2-hop
path to G

A sets distance to G to 3 and propagates
F sets distance to G to 4, through A

Count-to-Infinity

Link from A to E fails

A advertises distance of infinity to E

B and C advertise a distance of 2to E

B decides it can reach E in 3 hops through C
A decides it can reach E in 4 hops through B

When does this stop?

C decides it can reach E in 5 hops through A, ...

Good news travels fast

* Adecrease in link cost has to be fresh
Information

 Network converges at most in O(diameter)
steps

Bad news travels slowly

An increase in cost may cause confusion with old
information, may form loops

Consider routes to A

Initially, B:A,4,A; C:A,5,B

Then B:A,12,A, selects C as next hop ->B:A,6,C
C->A,7B;B->A,8C;C->A9,B; B ->A,10,C;

C finally chooses C:A,10,A, and B -> A,11,C!

How to avoid loops

 |IPTTL field prevents a packet from living
forever
— Does not repair a loop

 Simple approach: consider a small cost n
(e.g., 16) to be infinity
— After n rounds decide node is unavailable
— But rounds can be long, this takes time

 Problem: distance vector based only on
local information

Better loop avoidance

« Split Horizon

— When sending updates to node A, don't include
routes you learned from A

— Prevents B and C from sending cost 2 to A

* Split Horizon with Poison Reverse

— Rather than not advertising routes learned from
A, explicitly include cost of .

— Faster to break out of loops, but increases
advertisement sizes

Warning

» Split horizon/split horizon with poison
reverse only help between two nodes
— Can still get loop with three nodes involved

— Might need to delay advertising routes after
changes, but affects convergence time

Other approaches

« DSDV: destination sequenced distance
vector
— Uses a ‘version’ number per destination message

— Avoids loops by preventing nodes from using old
iInformation from descendents

— But, you can only update when new version comes
from root

« Path Vector: (BGP)
— Replace ‘distance’ with ‘path’
— Avoids loops with extra cost

Link State Routing

e Strategy:

— send to all nodes information about directly
connected neighbors

* Link State Packet (LSP)
— |ID of the node that created the LSP
— Cost of link to each directly connected neighbor
— Sequence number (SEQNO)
— TTL

Reliable Flooding

Store most recent LSP from each node
— Ignore earlier versions of the same LSP

Forward LSP to all nodes but the one that
sent it

Generate new LSP periodically
— Increment SEQNO

Start at SEQNO=0 when reboot

— If you hear your own packet with SEQNO=n, set your
next SEQNO to n+1

Decrement TTL of each stored LSP
— Discard when TTL=0

A Link-State Routing Algorithm

notation:

* C(X,Y): link cost from node x to y; = « if not
direct neighbors

* D(V): current value of cost of path from
source to dest. v

* p(V): predecessor node along path from
source to v

* N': set of nodes whose least cost path
definitively known

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

Dijsktra’ s Algorithm

1 Initialization:

2 N ={u}

3 forall nodes v

4 ifvadjacenttou

5 then D(v) = c(u,v)

6 elseD(v)=«

7
(\8 Loop

9 find w not in N' such that D(w) is a minimum
10 addwto N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /*new cost to v is either old cost to v or known
u4 shortest path cost to w plus cost from w to v */

1

5 until all nodes in N'

Diikstra’ s alsorithm: example

D(v) D(w) D(x) D(y) D(z)
Step N p(v) pw) p(X) Py p()

0 u 7,u @ 5,u o oo
1 uw 6,W (’5,@11,W o0
2 UWX 6,W 11w 14X
3 UWXV A0, 14,x
4 UWXVY 12,
5 Uwxvyz

notes:

» construct shortest path tree by
tracing predecessor nodes

» ties can exist (can be broken
arbitrarily)

Network Layer

Dijkstra’ s algorithm: another

—examplte——m—

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y).,p(y) D(z),p(2)
0 u 2,uU ‘5u 1u o oo
1 ux «—— 2,u_ 4xX 2 X o0
2 4,y
3 4,y
4 4,y
5

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

Dijkstra’ s algorithm: example (2)

resulting shortest-path tree from u:

e,

resulting forwarding table in u:

destination link
V (u,v)
X (u,x)
y (u,x)
W (u,x)
V4 (u,x)

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

Dijkstra’ s algorithm, discussion

algorithm complexity: n nodes

* each iteration: need to check all nodes, w, notin N
% n(n+1)/2 comparisons: O(n?)

* more efficient implementations possible: O(nlogn)

oscillations possible:

< e.g., support link cost equals amount of carried
traffic:

initiall given these costs, given these costs, given these costs,
Initially find new routing.... find new routing.... find new routing....
resulting in new costs resulting in new costs resulting in new costs

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

Distance Vector vs. Link State

« # of messages (per node)
— DV: O(d), where d is degree of node
— LS: O(nd) for n nodes in system

« Computation
— DV: convergence time varies (e.g., count-to-infinity)
— LS: O(n?) with O(nd) messages

 Robustness: what happens with
malfunctioning router?

— DV: Nodes can advertise incorrect path cost

— DV: Others can use the cost, propagates through
network

— LS: Nodes can advertise incorrect link cost

Metrics

Original ARPANET metric

— measures number of packets enqueued in each link
— neither latency nor bandwidth in consideration

New ARPANET metric

— Stamp arrival time (AT) and departure time (DT)

— When link-level ACK arrives, compute
Delay = (DT — AT) + Transmit + Latency

— If timeout, reset DT to departure time for retransmission
— Link cost = average delay over some time period

Fine Tuning
— Compressed dynamic range
— Replaced Delay with link utilization

Today: commonly set manually to achieve
specific goals

Examples

 RIPV?Z
— Falrly simple implementation of DV
— RFC 2453 (38 pages)

 OSPF (Open Shortest Path First)
— More complex link-state protocol

— Adds notion of areas for scalability
— RFC 2328 (244 pages)

RIP table processing

“*RIP routing tables managed by application-
level process called route-d (daemon)

‘s»advertisements sent in UDP packets,
periodically repeated

transport transprt
(UDP) (UDP)
network forwarding forwarding network
(IP) table table (IP)
link link
physical physical

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

RIPv2

 Runs on UDP port 520
 Linkcost=1

* Periodic updates every 30s, plus
triggered updates

Relies on count-to-infinity to resolve
loops

— Maximum diameter 15 («~ = 16)

— Supports split horizon, poison reverse
Deletion

— If you receive an entry with metric = 16 OR
— If a route times out

Packet format

0 1 2 3
01234567890123456789012345678901
s T S S T B s A Kt Tt T st T S e B s
| command (1) | version (1) | must be zero (2) |

tom - Fom e o +

~ RIP Entry (20) ~

RIPv2 Entry

0 1 2 3
01234567890123456789012345678901
tt—t—t—t—t—t—t—t -ttt -ttt -ttt bttt —F—F =ttt —F—+—
| address family identifier (2) | Route Tag (2)

o o
| IP address (4)

o e e e e
| Subnet Mask (4)

o e e
| Next Hop (4)
O
| Metric (4)

e

+

Route Tag field

* Allows RIP nodes to distinguish internal
and external routes

* Must persist across announcements
 E.g., encode AS

Next Hop field

« Allows one router to advertise routes for
multiple routers on the same subnet

« Suppose only XR1 talks RIPv2:

| IR1| | IR2| | IR3| | XR1| | XR2 | | XR3|

——t+—= == ——4—- ——t—= == ——4—-
| | | | | |

——t—————— t————— Fm—m t————— b +——

OSPFv2

Link state protocol

 Runs directly over IP (protocol 89)
— Has to provide its own reliability

All exchanges are authenticated
Adds notion of areas for scalability

OSPF Areas

Area 0O is “backbone” area (includes ali
boundary routers)

Traffic between two areas must always go
through area O

Only need to know how to route exactly
within area

Otherwise, just route to the appropriate area
Tradeoff: scalability versus optimal routes

Area 1

& - L%)
.." ; |
III -_." I
I'*a. AI'EEI .'I: ._.
. border | X
. | ..-.

OSPF Areas

/ Boundary router

Backbone
router

e

_,.-'"

r
!
|
&,
H.

Internal
routers

Area 2

.,
-
n
" .
'H.

™, 3
A J

.) .,

Area 3

Next Class

* Inter-domain routing: how scale routing
to the entire Internet

