CSCI-1680 - Computer Networks

Link Layer I:
Errors, Reliability and Performance

Based partly on lecture notes by David Mazieres, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

* Last time
— Physical layer: encoding, modulation
— Link layer framing

 Today — Link Layer cont.

— Getting frames across: errors, reliability,
performance

Error Detection

ldea: have some codes be invalid
— Must add bits to catch errors in packet
Sometimes can also correct errors
— If enough redundancy

— Might have to retransmit

Used in multiple layers

Three examples today:
— Parity

— Internet Checksum

— CRC

Simplest Schemes

 Repeat frame n times

— Can we detect errors?

— Can we correct errors?

 Voting

— Problem: high redundancy : n !
 Example: send each bit 3 times

— Valid codes: 000 111

— Invalid codes : 001 010 011 100 101 110

—Correctons : 0 0 1 O0 1 1

Parity

 Add a parity bit to the end of a word

 Example with 2 bits:
— Valid: 000 011 011 110
— Invalid: 001 010 010 111
— Can we correct?
 Can detect odd number of bit errors
— No correction

In general

« Hamming distance: number of bits that
are different

— E.g.: HD (00001010, 01000110) = 3

e |If min HD between valid codewords is d:
— Can detect d-1 bit error
— Can correct |(d-1)/2] bit errors

 What is d for parity and 3-voting?

2-D Parity

bits
Y | 0101001 |1

1101001

1011110

Data

0110100

0
1
0001110 |1
1
0

y | 1011111

Parity
byte

 Add 1 parity bit for each 7 bits

 Add 1 parity bit for each bit position across
the frame)
— Can correct single-bit errors
— Can detect 2- and 3-bit errors, most 4-bit errors

 Find a 4-bit error that can’t be corrected

1111011 | O

Internet (IP) Checksum Algorithm

 Not used at the link level

« Add up all the words that are transmitted and
then transmit the result of that sum

— The result is called the checksum

* The receiver performs the same calculation on
the received data and compares the result with
the received checksum

 If any transmitted data, including the checksum
itself, is corrupted, then the results will not
match, so the receiver knows that an error
occurred

Internet Checksum Algorithm

« Consider the data being checksummed as a
sequence of 16-bit integers.

« Add them together using 16-bit ones complement
arithmetic (explained next slide) and then take the
ones complement of the resuilt.

¢ That 16'b|t u_short

number cksum (u_short *buf, int count)
is the checksum
u_long sum = O;
while (count--)
if ((sum += *buf) & Oxffff) /* carry */
sum = (sum & Oxffff) + 1;
return ~(sum & Oxffff);
+

How good is It?

e Checksum does catch all 1-bit errors

 But not all 2-bit errors
— E.g., iIncrement word ending in 0, decrement one
ending in 1
 Checksum also optional in UDP
— All Os means no checksums calculated

— If checksum word gets wiped to 0 as part of
error, bad news

From rfc791 (IP)

“This Is a simple to compute checksum and
experimental evidence indicates it Is
adequate, but it is provisional and may be
replaced by a CRC procedure, depending on

further experience.”

CRC = Error Detection with
Polynomials

« Goal: maximize protection, minimize bits

 Consider message to be a polynomial in
Z,[X]
— Each bit is one coefficient
— E.g., message 10101001 -> m(x) = X’ + x>+ x3+ 1
« Can reduce one polynomial modulo another
— Let n(x) = m(X)x3. Let C(x) = x3 + x2 + 1.
— n(x) “mod” C(x) : r(x)
— Find q(x) and r(x) s.t. n(x) = q(x)C(x) + r(x) and
degree of r(x) < degree of C(x)
— Analogous to taking 11 mod 5=1

Polynomial Division Example

« Just long division, but addition/subtraction is XOR

11111001
Generator —» 1101)10011010000 <— Message
1101‘
1001
1101

1000
1101v

1011

1101V
1100

11017VV

1000
1101

101 <«— Remainder

CRC

« Select a divisor polynomial C(x), degree k

— C(X) should be irreducible — not expressible as a
product of two lower-degree polynomials in Z,[x]

 Add k bits to message
— Let n(x) = m(x)x* (add k 0’s to m)
— Compute r(x) = n(x) mod C(x)
— Compute n(x) = n(x) — r(x) (will be divisible by C(x))
(subtraction is XOR, just set k lowest bits to r(x)!)
 Checking CRC is easy
— Reduce message by C(x), make sure remainder is O

Why iIs this good?

« Suppose you send m(x), recipient gets m’(x)
— E(X) = m’(x) — m(x) (all the incorrect bits)
— If CRC passes, C(x) divides m’(x)
— Therefore, C(x) must divide E(x)

 Choose C(x) that doesn’t divide any common
errors!

— All single-bit errors caught if xk, x0 coefficients in C(x)
are 1

— All 2-bit errors caught if at least 3 terms in C(x)
— Any odd number of errors if last two terms (x + 1)
— Any error burst less than length k caught

Common CRC Polynomials

Polynomials not trivial to find
— Some studies used (almost) exhaustive search

CRC-8: x8+x2+x1+1
CRC-16: x1¥ + x>+ x2+ 1

CRC-32: x32 + X206 + x&3 + x22 + x10 + x12 +

CRC easily computable in hardware

An alternative for reliability

 Erasure coding
— Assume you can detect errors

— Code is designed to tolerate entire missing frames
« Collisions, noise, drops because of bit errors

— Forward error correction

« Examples: Reed-Solomon codes, LT Codes,
Raptor Codes

* Property:
— From K source frames, produce B > K encoded
frames

— Receiver can reconstruct source with any K’ frames,
with K’ slightly larger than K

— Some codes can make B as large as needed, on the
fly

Reliability and Performance

Sending Frames Across

Transmission Delay

Latency
Propagation Delay

Sending Frames Across

Throughput: bits / s

Which matters most, bandwidth or delay?

« How much data can we send during one RTT?
 E.g., send request, receive file

Requ es t
Respoﬂse

v v

 For small transfers, latency more important,
for bulk, throughput more important

Time

Performance Metrics

Throughput - Number of bits received/unit of
time

— e.g. 10Mbps

Goodput - Useful bits received per unit of time

Latency — How long for message to cross
network

— Process + Queue + Transmit + Propagation
Jitter — Variation in latency

Latency

Processing
— Per message, small, limits throughput
— €.0. 100Mb . pkt . B » 8,333 pkt /s or 120“S/pkt

s 1500B 8b
Queue
— Highly variable, offered load vs outgoing b/w

Transmission
— Size/Bandwidth

Propagation
— Distance/Speed of Light

Reliable Delivery

e Several sources of errors In transmission
 Error detection can discard bad frames

 Problem: if bad packets are lost, how can
we ensure reliable delivery?

— Exactly-once semantics = at least once + at most
once

At Least Once Semantics

 How can the sender know packet arrived
at least once?

— Acknowledgments + Timeout

« Stop and Wait Protocol
— S: Send packet, wait
— R: Receive packet, send ACK
— S: Receive ACK, send next packet
— S: No ACK, timeout and retransmit

Sender Receiver

Time

Sender Receiver Sender Receiver

B Frame N Fl‘ame
= =
& é e é K
£ & 5 C
= = BC = B
+ N Frame
5
3
£ ACK
(a) (c)
Sender Receiver Sender Receiver
N Frame -
i =]
2 :
=
N Franle §
5 =
é =
= ACK

Stop and Wait Problems

Duplicate data

Duplicate acks

Slow (channel idle most of the timel)
May be difficult to set the timeout value

Duplicate data: adding sequence
numbers

Sender Receiver

Time

At Most Once Semantics

« How to avoid duplicates?
— Uniquely identify each packet
— Have receiver and sender remember

« Stop and Wait: add 1 bit to the header
— Why is it enough?
« Do we need to check errors in ACKs?

Going faster: sliding window protocol

Still have the problem of keeping pipe full
— Generalize approach with > 1-bit counter
— Allow multiple outstanding (unACKed) frames

— Upper bound on unACKed frames, called
window

Sender Receiver

Time

How big should the window be?

Sender Receiver

Time

« How many bytes can we transmit in one RTT?
— BW B/s x RTT s => “Bandwidth-Delay Product”

Maximizing Throughput

Delay

-

Bandwidth ' .

« Can view network as a pipe

— For full utilization want bytes in flight =2 bandwidth x
delay

— But don’t want to overload the network (future lectures)

 What if protocol doesn’t involve bulk transfer?

— Get throughput through concurrency — service multiple
clients simultaneously

Y

Sliding Window Sender

Assign sequence number (SegNum) to each frame

Maintain three state variables
— send window size (SWS)
— last acknowledgment received (LAR)

— last frame sent (LFS)
< SWS

W { e
i i

LAR LFS

« Maintain invariant: LFS — LAR £ SWS
« Advance LAR when ACK arrives
« Buffer up to SWS frames

Sliding Window Recelver

Maintain three state variables:
— receive window size (RWS)

— largest acceptable frame (LAF)

— last frame received (LFR)

<RWS

W g e
i i

LFR LAF

Maintain invariant: LAF — LFR £ RWS

Frame SegNum arrives:
— If LFR < SeqNum < LAF, accept
— If SegNum < LFR or SegNum > LAF, discard

Send cumulative ACKs

Tuning Send Window

 How big should SWS be?
— “Fill the pipe”

 How big should RWS be?
— 1 <RWS = SWS

« How many distinct sequence numbers
needed?

— SWS can’t be more more than half of the space
of valid seg#s.

Example

SWS = RWS =5. Are 6 seq #s enough?
Sender sends 0,1,2,3,4

All acks are lost

Sender sends 0,1,2,3,4 again

Summary

* Want exactly once
— At least once: acks + timeouts + retransmissions
— At most once: sequence numbers

« Want efficiency
— Sliding window

Next class

* Link Layer Il

— Ethernet: dominant link layer technology
« Framing, MAC, Addressing

— Switching

