CSCI-1680 - Computer Networks

Chen Avin (avin)

Based partly on lecture notes by David Maziéeres, Phil Levis, John Jannotti, Peterson & Davie, Rodrigo Fonseca

Administrivia

« Sign and hand in Collaboration Policy

* Signup for Snowcast milestone
— Thursday from 8pm to 11pm
— See Piazza for links

 Github

Today

« Switching, Multiplexing
« Layering and Encapsulation
* Intro to IP, TCP, UDP

Building Blocks

 Nodes: Computers (hosts), dedicated
routers, ...

* Links: Coax, twisted pair, fiber, radio, ...

— —

Host Host

How to connect more nodes?

I ; I ;

b% Multiple wires

I ; I ;

X = ==

Shared medium

From Links to Networks

* To scale to more nodes, use switching
— Nodes can connect to multiple other nodes
— Recursively, one node can connect to multiple

networks

Switching Strategies

* Circuit Switching — virtual link between two
nodes
— Set up circuit (e.g. dialing, signaling) — may fail: busy
— Transfer data at known rate
— Tear down circuit

« Packet Switching
— Forward bounded-size messages.
— Each message can have different senders/receivers
— Focus of this course

« Analogy: circuit switching reserves the highway
for a cross-country trip. Packet switching
interleaves everyone’s cars.

Multiplexing

2, A

—P
/

- — -
i—»

L2 — R2
/ Switch 1 Switch 2 \

L3 R3

 What to do when multiple flows must share
alink?

Circuit switching: FDM versus TDM

Example:
FDM 4users HEOLCIN
A
frequency
>
TDM time
A
frequency I I I I I
>

time

Slide from:“Computer Networking: A Top Down Approach” - ¢t edition

STDM

— >

/ Frames \
T

-~ v N

"5 0 iN T

Slots: 123456123456

« Synchronous time-division multiplexing
— Divide time into equal-sized quanta, round robin
— lllusion of direct link for switched circuit net
— But wastes capacity if not enough flows

— Also doesn’t degrade gracefully when more flows
than slots

FDM

* Frequency-division multiplexing:
allocates a frequency band for each flow
— Same TV channels and radio stations

« Similar drawbacks to STDM
— Wastes bandwidth if someone not sending
— Can run out of spectrum
— Scaling, managing complexity

Packet Switching: Statistical Multiplexing

;ﬁ'zhll LIL B e ey

* |ldea: like STDM but with no pre-
determined time slots (or order!)

 Maximizes link utilization
— Link is never idle if there are packets to send

Statistical Multiplexing

 Cons:
— Hard to guarantee fairness
— Unpredictable queuing delays
— Packets may take different paths

 Yet...

— This I1s the main model used on the Internet

Managing Complexity

Very large number of computers

Incredible variety of technologies
— Each with very different constraints

No single administrative entity

Evolving demands, protocols, applications
— Each with very different requirements!

How do we make sense of all this?

Layering: Network Architecture

Application programs

Process-to-process channels

Host-to-host connectivity

Hardware

Application programs

Request/reply Message stream
channel channel

Host-to-host connectivity

Hardware

e Separation of concerns

— Break problem into separate parts

— Solve each one independently

— Tie together through common interfaces: abstraction

— Encapsulate data from the layer above inside data from the

layer below
— Allow independent evolution

Layers, Services, Protocols

Service: abstraction provided to layer above
API: concrete way of using the service

l l l Protocol: rules for communication
within same layer

Layer N uses the services provided by N-1 to
implement its protocol and provide its own services

Internet: Layers, Services, Protocols

Service: user-facing application.

Application Application-defined messages

Service: multiplexing applications
Transport Reliable byte stream to other node (TCP),
Unreliable datagram (UDP)

Service: move packets to any other node in the network

Network IP: Unreliable, best-effort service model

Service: move frames to other node across link.

Link May add reliability, medium access control

Physical Service: move bits to other node across link

Internet Layering

Application Protocol
Application = = == = = = == = = = = = = = = - - - - - Application

Transport o s = == == == w w w= == = == = = = = = - Transport

Network = = = = = = = = = = = = Network |= = = | Network
Link-Layer Protocol
Link - —— Link - - Link - - - Link
Physical Physical Physical Physical

Host Switch Router host

Internet Architecture

FTP |

HTTPl NV | TFTP‘

Internet Protocol Graph

Application

TCP | UDP

IP
Subnetwork

Alternative view of the Internet
architecture. The “Network”
layer shown here is sometimes
referred to as the “sub-
network” or “link” layer.

Encapsulation

message | M application
segment |H¢| ™ transport \
datagram | H,| H,| M network
frame [H,|H,| H| M link -
physical
link I
physical éc—?
switch
destination H.| H| ™ network
M | |application M| o] Fe] M link
H| ™ transport Iphy5|cal
Hol H| ™ network
AR Nk router
physical

Slide from:“Computer Networking: A Top Down Approach” - 6t edition

OSI| Reference Model

End host End host
Application Protocol

Transport Protocol

One or more nodes
within the network

Description of Layers

 Physical Layer
— Handles the transmission of raw bits over a communication link
« Data Link Layer

— Collects a stream of bits into a larger aggregate called a frame

— Network adaptor along with device driver in OS implement the
protocol in this layer

— Frames are actually delivered to hosts
 Network Layer
— Handles routing among nodes within a packet-switched network

— Unit of data exchanged between nodes in this layer is called a
packet

The lower three layers are implemented on all network nodes

Description of Layers

Transport Layer

— Implements a process-to-process channel

— Unit of data exchanges in this layer is called a
Session Layer

— Provides a name space that is used to tie together the
potentially different transport streams that are part of a single
application

Presentation Layer
— Concerned about the format of data exchanged between peers

Application Layer
— Standardize common type of exchanges

The transport layer and the higher layers typically run only on
end-hosts and not on the intermediate switches and routers

Protocols

 What do you need to communicate?
— Definition of message formats
— Definition of the semantics of messages

— Definition of valid sequences of messages
* Including valid timings

Addressing

Each node typically has a unique* name

— When that name also tells you how to get to the node, it
IS called an address

Each layer can have its own naming/addressing

Routing is the process of finding a path to the
destination

— In packet switched networks, each packet must have a
destination address

— For circuit switched, use address to set up circuit

Special addresses can exist for
broadcast/multicast/anycast

* or thinks it does, in case there is a
shortage

Network Layer: Internet Protocol (IP)

 Used by most computer networks today

— Runs over a variety of physical networks, can connect
Ethernet, wireless, modem lines, etc.

 Every host has a unique 4-byte IP address
(IPv4)
— E.g., www.cs.brown.edu -128.148.32.110

— The network knows how to route a packet to any
address

 Need more to build something like the Web
— Need naming (DNS)
— Interface for browser and server software (next lecture)

— Need demultiplexing within a host: which packets are for
web browser, Skype, or the mail program?

Inter-process Communication

Host

] []
= =
Host

Host

« Talking from host to host is great, but we want
abstraction of inter-process communication

« Solution: encapsulate another protocol within IP

Transport: UDP and TCP

« UDP and TCP most popular protocols on IP
— Both use 16-bit port number & 32-bit IP address
— Applications bind a port & receive traffic on that port

« UDP - User (unreliable) Datagram Protocol
— EXposes packet-switched nature of Internet
— Sent packets may be dropped, reordered, even
duplicated (but there is corruption protection)
« TCP = Transmission Control Protocol

— Provides illusion of reliable ‘pipe’ or ‘stream’ between
two processes anywhere on the network

— Handles congestion and flow control

Uses of TCP

 Most applications use TCP
— Easier to program (reliability is convenient)
— Automatically avoids congestion (don’t need to
worry about taking down the network
« Servers typically listen on well-know
ports:
— SSH: 22
— SMTP (email): 25
— Finger: 79
— HTTP (web): 80

Using TCP/IP

« How can applications use the network?

« Sockets API.

— Originally from BSD, widely implemented (*BSD,
Linux, Mac OS X, Windows, ...)

— Important do know and do once
— Higher-level APIs build on them

« After basic setup, much like files

Sockets: Communication Between
Machines
* Network sockets are file descriptors too

« Datagram sockets: unreliable message delivery
— With IP, gives you UDP
— Send atomic messages, which may be reordered or lost
— Special system calls to read/write: send/recv

« Stream sockets: bi-directional pipes
— With IP, gives you TCP
— Bytes written on one end read on another

— Reads may not return full amount requested, must re-
read

Coming Up

* Next class: Physical Layer
e Thu 13th: Snowcast milestones

