Virtual Machines
Part 1: 50 years ago
It’s 1964 …

The Beatles appear on the Ed Sullivan show

• IBM wants a multiuser time-sharing system

• TSS project
 – large, monolithic system
 – lots of people working on it
 – for years
 – total, complete flop

• CMS
 – single-user time-sharing system for IBM 360

• CP67
 – virtual machine monitor (VMM)
 – supports multiple virtual IBM 360s

• Put the two together …
 – a (working) multiuser time-sharing system
Virtual Machines

Applications
OSa
Virtual Machine

Applications
OSb
Virtual Machine

Applications
OSc
Virtual Machine

Virtual Machine Monitor

Hardware
Why?

- Structuring technique for a multi-user system
- OS debugging and testing
- Multiple OSes on one machine
- Adapt to hardware changes in software
- Server consolidation and service isolation
User vs. Privileged Mode

- Privileged mode
 - may run all instructions, access all registers
 - for example:
 - modify address translation for virtual memory
 - access and control I/O devices
 - mask and unmask interrupts
 - start and stop system clock
- User mode
 - may run only “innocuous” instructions
 - may access only normal registers
How?

• Approach 1
 – system has “normal” scheduler and virtual memory
 – its processes run in privileged mode
How?

• Approach 2
 – system has “normal” scheduler and virtual memory
 – its processes run an emulator of the real machine
How?

• Approach 3
 – system has “normal” scheduler and virtual memory
 – its processes execute user-mode code directly, but run the emulator when going into privileged mode
How?

• Approach 4
 – system has “normal” scheduler and virtual memory
 – its processes execute user-mode code directly, but emulate only privileged instructions
How?

```
<table>
<thead>
<tr>
<th>Privileged</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Requirements

• A virtual machine is an efficient, isolated duplicate of real machine
Sensitive Instructions

• Control-sensitive instructions
 – affect the allocation of resources available to the virtual machine
 – change processor mode without causing a trap

• Behavior-sensitive instructions
 – effect of execution depends upon location in real memory or on processor mode
Privileged Instructions

• Cause a fault in user mode
• Work fine in privileged mode
Theorem (!)

- For any conventional third-generation computer, a virtual machine monitor may be constructed if the set of sensitive instructions for that computer is a subset of the set of privileged instructions.
The (Real) 360 Architecture

- Two execution modes
 - supervisor and problem (user)
 - all sensitive instructions are privileged instructions

- Memory is protectable: 2k-byte granularity

- All interrupt vectors and the clock are in first 512 bytes of memory

- I/O done via channel programs in memory, initiated with privileged instructions

- Dynamic address translation (virtual memory) added for Model 67
Real Interrupts and Traps

handler address
Virtual Interrupts and Traps
Actions on Real 360

<table>
<thead>
<tr>
<th></th>
<th>User mode</th>
<th>Privileged mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-sensitive instruction</td>
<td>executes fine</td>
<td>executes fine</td>
</tr>
<tr>
<td>errant instruction</td>
<td>traps to kernel</td>
<td>traps to kernel</td>
</tr>
<tr>
<td>sensitive instruction</td>
<td>traps to kernel</td>
<td>executes fine</td>
</tr>
<tr>
<td>access low memory</td>
<td>traps to kernel</td>
<td>executes fine</td>
</tr>
</tbody>
</table>
Actions on Virtual 360

<table>
<thead>
<tr>
<th></th>
<th>User mode</th>
<th>Privileged mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-sensitive</td>
<td>executes fine</td>
<td>executes fine</td>
</tr>
<tr>
<td>instruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>errant instruction</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
</tr>
<tr>
<td>sensitive instruction</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM verifies and emulates instruction</td>
</tr>
<tr>
<td>access low</td>
<td>traps to VMM; VMM causes trap to occur on guest OS</td>
<td>traps to VMM; VMM verifies and emulates/translates access</td>
</tr>
<tr>
<td>memory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virtual Devices?

• Terminals
 – connecting (real) people
• Networks
 – didn’t exist in the 60s
 – (how did virtual machines communicate?)
• Disk drives
 – CP67 supported “mini disks”
 – extended at Brown into “segment system”
• Interval timer
 – virtual or real?
Coping

• Invent new devices
 – recognized by VMM as not real, but referring to additional functionality
 - e.g., mini disks
• Provide new VM facilities not present on real machine
 – e.g., Brown segment system
 – special instructions on VM to request service from VMM
 - sort of like system calls (supervisor calls on 360), but ...
 • hypervisor calls
 – 360 had an extra, unused privileged instruction
 – the diagnose instruction