Proof Through a Probabilistic Argument

• Compute

\[\sum_{i=0}^{n} i \binom{n}{i} \left(\frac{1}{2} \right)^n \]
Proof Through a Probabilistic Argument

• Compute

\[\sum_{i=0}^{n} i \binom{n}{i} \left(\frac{1}{2} \right)^n \]

• Let \(X \sim B(n, 1/2) \),

• \(X_i \) independent r.v. with \(Pr(X_i = 1) = Or(X_i = 0) = 1/2 \).

\[\sum_{i=0}^{n} i \binom{n}{i} \left(\frac{1}{2} \right)^n = E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \frac{n}{2} \]

• We prove a deterministic statement using a probabilistic argument!
The Probabilistic Method

1. If $E[X] = C$, then there are values $c_1 \leq C$ and $c_2 \geq C$ such that $Pr(X = c_1) > 0$ and $Pr(X = c_2) > 0$.

2. If a random object in a set satisfies some property with positive probability then there is an object in that set that satisfies that property.
Theorem

Given any graph $G = (V, E)$ with n vertices and m edges, there is a partition of V into two disjoint sets A and B such that at least $m/2$ edges connect vertex in A to a vertex in B.

Proof.

Construct sets A and B by randomly assign each vertex to one of the two sets. The probability that a given edge connect A to B is $1/2$, thus the expected number of such edges is $m/2$. Thus, there exists such a partition.
Maximum Satisfiability

Given \(m \) clauses in CNF (Conjunctive Normal Form), assume that no clause contains a variable and its complement.

Theorem

For any set of \(m \) clauses there is a truth assignment that satisfy at least \(m/2 \) of the clauses.

Proof.

Assign random values to the variables. The probability that a given clause (with \(k \) literals) is not satisfied is bounded by

\[
1 - 2^{-k} \geq \frac{1}{2}.
\]
Monochromatic Complete Subgraphs

Given a complete graph on 1000 vertices, can you color the edges in two colors such that no clique of 20 vertices is monochromatic?

Theorem

If \(n \leq 2^{(k-1)/2} \) then it is possible to edge color the edges of a complete graph on \(n \) points \((K_n)\), such that is has no monochromatic \(K_k \) subgraph.
Proof.

Consider a random coloring. For a given set of k vertices, the probability that the clique defined by that set is monochromatic is bounded by

$$2 \times 2^{-\binom{k}{2}}.$$

There are $\binom{n}{k}$ such cliques, thus the probability that any clique is monochromatic is bounded by

$$\binom{n}{k}2 \times 2^{-\binom{k}{2}} \leq \frac{n^k}{k!}2 \times 2^{-\binom{k}{2}} \leq 2^{(k-1)^2/2-k(k-1)/2+1} \frac{1}{k!} < 1.$$

Thus, there is a coloring with the required property. □
Sample and Modify

An independent set in a graph G is a set of vertices with no edges between them. Finding the largest independent set in a graph is an NP-hard problem.

Theorem

Let $G = (V, E)$ be a graph on n vertices with $dn/2$ edges. Then G has an independent set with at least $n/2d$ vertices.

Algorithm:

1. Delete each vertex of G (together with its incident edges) independently with probability $1 - 1/d$.
2. For each remaining edge, remove it and one of its adjacent vertices.
\[X = \text{number of vertices that survive the first step of the algorithm.} \]

\[E[X] = \frac{n}{d}. \]

\[Y = \text{number of edges that survive the first step.} \]
An edge survives if and only if its two adjacent vertices survive.

\[E[Y] = \frac{nd}{2} \left(\frac{1}{d}\right)^2 = \frac{n}{2d}. \]

The second step of the algorithm removes all the remaining edges, and at most \(Y \) vertices.
Size of output independent set:

\[E[X - Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}. \]
Conditional Expectation

Definition

\[
E[Y \mid Z = z] = \sum_y y \Pr(Y = y \mid Z = z),
\]

where the summation is over all \(y \) in the range of \(Y \).

Lemma

For any random variables \(X \) and \(Y \),

\[
E[X] = \sum_y \Pr(Y = y)E[X \mid Y = y],
\]

where the sum is over all values in the range of \(Y \).
Given a graph $G = (V, E)$ with n vertices and m edges, we showed that there is a partition of V into A and B such that at least $m/2$ edges connect A to B.
How do we find such a partition?
\(C(A, B) = \) number of edges connecting \(A\) to \(B\).
If \(A, B\) is a random partition \(E[C(A, B)] = \frac{m}{2}\).

Algorithm:

1. Let \(v_1, v_2, \ldots, v_n\) be an arbitrary enumeration of the vertices.
2. Let \(x_i\) be the set where \(v_i\) is placed \((x_i \in \{A, B\})\).
3. For \(i = 1\) to \(n\) do:
 1. Place \(v_i\) such that

 \[
 E[C(A, B) \mid x_1, x_2, \ldots, x_i] \\
 \geq E[C(A, B) \mid x_1, x_2, \ldots, x_{i-1}] \geq \frac{m}{2}.
 \]
Lemma

For all $i = 1, \ldots, n$ there is an assignment of v_i such that

$$E[C(A, B) \mid x_1, x_2, \ldots, x_i] \geq E[C(A, B) \mid x_1, x_2, \ldots, x_{i-1}] \geq m/2.$$
Proof.

By induction on i.

For $i = 1$, $E[C(A, B) \mid x_1] = E[C(A, B)] = m/2$.

For $i > 1$, if we place v_i randomly in one of the two sets,

\[
E[C(A, B) \mid x_1, x_2, \ldots, x_{i-1}] = \frac{1}{2} E[C(A, B) \mid x_1, x_2, \ldots, x_i = A] + \frac{1}{2} E[C(A, B) \mid x_1, x_2, \ldots, x_i = B].
\]

\[
\max(E[C(A, B) \mid x_1, x_2, \ldots, x_i = A], E[C(A, B) \mid x_1, x_2, \ldots, x_i = B]) \geq E[C(A, B) \mid x_1, x_2, \ldots, x_{i-1}] \geq m/2
\]
How do we compute

$$\max(E[C(A, B) \mid x_1, x_2, \ldots, x_i = A], E[C(A, B) \mid x_1, x_2, \ldots, x_i = B]) \geq E[C(A, B) \mid x_1, x_2, \ldots, x_{i-1}] \geq m/2$$

We just need to consider edges between v_j and v_1, \ldots, v_{i-1}.

Simple Algorithm:

1. Place v_1 arbitrarily.
2. For $i = 2$ to n do
 1. Place v_i in the set with smaller number of neighbors.
Perfect Hashing

Goal: Store a static disctionary of n items in a table of $O(n)$ space such that any search takes $O(1)$ time.
Definition

Let U be a universe with $|U| \geq n$ and $V = \{0, 1, \ldots, n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be k-universal if, for any elements x_1, x_2, \ldots, x_k, when a hash function h is chosen uniformly at random from \mathcal{H},

$$\Pr(h(x_1) = h(x_2) = \ldots = h(x_k)) \leq \frac{1}{n^{k-1}}.$$
Example of 2-Universal Hash Functions

Universe $U = \{0, 1, 2, \ldots, m - 1\}$
Table keys $V = \{0, 1, 2, \ldots, n - 1\}$, with $m \geq n$.
A family of hash functions obtained by choosing a prime $p \geq m$,

$$h_{a,b}(x) = ((ax + b) \mod p) \mod n,$$

and taking the family

$$\mathcal{H} = \{h_{a,b} \mid 1 \leq a \leq p - 1, 0 \leq b \leq p\}.$$

Lemma

\mathcal{H} is 2-universal.
Lemma

\(\mathcal{H} \) is 2-universal.

Proof.

We first observe that for \(x_1, x_2 \in \{0, \ldots, p - 1\}, x_1 \neq x_2, \)

\[ax_1 + b \neq ax_2 + b \mod p. \]

Thus, if \(h_{a,b}(x_1) = h_{a,b}(x_2) \) there is a pair \((s, r)\) such that \(s \neq r, \)
\(s = r \mod n, \) and

\[(ax_1 + b) \mod p = r \]
\[(ax_2 + b) \mod p = s \]

For each \(r \) there are \(\leq \lceil \frac{p}{n} \rceil - 1 \) values \(s \neq r \) such that \(s = r \mod n. \) There are \(p \) choices of \(r, \) and for each pair \((r, s)\) there is only one pair \((a, b)\) that satisfies the relation.

Thus, the probability of a collision is \(\leq \frac{p(\lceil \frac{p}{n} \rceil - 1)}{p(p-1)} \leq \frac{1}{n}. \)

\hfill \Box
Lemma

Assume that \(m \) elements are hashed into an \(n \) bin chain hashing table, using a hash function \(h \) chosen uniformly at random from a 2-universal family. For an arbitrary element \(x \), let \(X \) be the number of items at the bin \(h(x) \).

\[
E[X] \leq \begin{cases}
\frac{m}{n} & \text{if } x \notin S \\
1 + \frac{m-1}{n} & \text{if } x \in S.
\end{cases}
\]

Proof.

Let \(X_i = 1 \) if the \(i \)-th element of \(S \) is in the same bin as \(x \) and 0 otherwise. \(\Pr(X_i = 1) \leq 1/n \)

If \(x \notin S \), \(E[X] = E[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} E[X_i] \leq m/n \),

If \(x \in S \) (assume \(x \) is \(s_1 \)),

\[
E[X] = E[\sum_{i=1}^{m} X_i] = 1 + \sum_{i=2}^{m} E[X_i] \leq 1 + (m - 1)/n.
\]

\(\square \)
Lemma

If \(h \in \mathcal{H} \) is chosen uniformly at random from a 2-universal family of hash functions mapping the universe \(U \) to \([0, n - 1]\), then for any set \(S \subset U \) of size \(m \), with probability \(\geq 1/2 \) the number of collisions is bounded by \(m^2/n \).

Proof.

Let \(s_1, s_2, \ldots, s_m \) be the \(m \) items of \(S \). Let \(X_{ij} \) be 1 if the \(h(s_i) = h(s_j) \) and 0 otherwise. Let \(X = \sum_{1 \leq i < j \leq n} X_{ij} \).

\[
E[X] = E \left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq m} E[X_{ij}] \leq \left(\frac{m}{2} \right) \frac{1}{n} < \frac{m^2}{2n},
\]

Markov’s inequality yields

\[
\Pr(X \geq m^2/n) \leq \Pr(X \geq 2E[X]) \leq \frac{1}{2}.
\]
Definition

A hash function is perfect for a set S if it maps S with no collisions.

Lemma

If $h \in H$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to $[0, n - 1]$, then for any set $S \subseteq U$ of size m, such that $m^2 \leq n$ with probability $\geq 1/2$ the hash function is perfect.
Theorem

The two-level approach gives a perfect hashing scheme for m items using $O(m)$ bins.

Level I: use a hash table with $n = m$. Let X be the number of collisions,

$$\Pr(X \geq m^2/n) \leq \Pr(X \geq 2\mathbb{E}[X]) \leq \frac{1}{2}.$$

When $n = m$, there exists a choice of hash function from the 2-universal family that gives at most m collisions.
Level II: Let c_i be the number of items in the i-th bin. There are $\binom{c_i}{2}$ collisions between items in the i-th bin, thus

$$\sum_{i=1}^{m} \binom{c_i}{2} \leq m.$$

For each bin with $c_i > 1$ items, we find a second hash function that gives no collisions using space c_i^2. The total number of bins used is bounded above by

$$m + \sum_{i=1}^{m} c_i^2 \leq m + 2 \sum_{i=1}^{m} \binom{c_i}{2} + \sum_{i=1}^{m} c_i \leq m + 2m + m = 4m.$$

Hence the total number of bins used is only $O(m)$.
Complexity is usually studied in terms of resources, \textbf{TIME} and \textbf{SPACE}.
We add a new resource, \textbf{RANDOMNESS}, measured by the number of independent random bits used by the algorithm (\(=\) the entropy of the random source).
We proved:

Theorem

There is an algorithm for permutation routing on an $N = 2^n$-cube that uses a total of $O(nN)$ random bits and terminates with high probability in cn steps, for some constant c.

Can we achieve the same result with fewer random bits?

Theorem

There is an algorithm for permutation routing on an $N = 2^n$-cube that uses a total of $O(n)$ random bits and terminates with high probability in cn steps, for some constant c.
Proof

Let $A(\pi)$ be a randomized algorithm with input π that uses (up to) s random bits.

We can replace $A(\pi)$ with a deterministic algorithm $D(\pi, r)$ that takes two inputs, π and a random string $r \in \{0, \ldots, 2^s - 1\}$.

We can write $A(\pi)$ as

1. Choose r uniformly at random in $[0, 2^s - 1]$.
2. Run $D(\pi, r)$.

In the two phase routing algorithm $s = \log(N^N) = nN$ (it chooses a random destination independently for each packet).

Let $\mathcal{D}(\pi) = \{D(\pi, r) \mid r = 0, \ldots, 2^s - 1\}$ be the a collection of $m = 2^s$ deterministic algorithms $D(\pi, r)$.

We proved:

Lemma

*For a given input permutation π and a deterministic algorithm $D(\pi, r)$ chosen uniformly at random from \mathcal{D}, the probability that $D(\pi, r)$ fails to route π in cn steps is bounded by $1/N$.***
Using a Smaller Collection of Deterministic Algorithms

Choose a random subset $R \subset \{0, \ldots, 2^s - 1\}$ of $m = N^3$ s-bits sequences r_1, \ldots, r_m.
Let $X^\pi_i = 1$ if algorithm $D(\pi, r_i)$ does NOT route permutation π in cn steps, else $X^\pi_i = 0$

$$E\left[\sum_{i=1}^{N^3} X^\pi_i\right] \leq N^2$$

$$\text{Prob}\left(\sum_{i=1}^{N^3} X^\pi_i \geq 2N^2\right) \leq e^{-N^2/3}$$

$$\text{Prob}(\exists \pi \sum_{i=1}^{N^3} X^\pi_i \geq 2N^2) \leq N!e^{-N^2/3} < 1$$
Theorem

There exists a set \mathcal{D} of N^3 deterministic algorithms, such that for any given permutation π and an algorithm D chosen uniformly at random from \mathcal{D}, algorithm D routes π in cn steps with probability $1 - 1/N$. The random choice requires $O(n)$ random bits.
Can we do better?

Do we need any random bits?

Definition

A routing algorithm is **oblivious** if the path taken by one packet is independent of the source and destinations of any other packets in the system.

Theorem

Given an \(N \)-node network with maximum degree \(d \) the routing time of any deterministic oblivious routing scheme is

\[
\Omega\left(\sqrt{\frac{N}{d^3}}\right).
\]
Theorem

For any deterministic oblivious algorithm for permutation routing on the $N = 2^n$ cube there is an input permutation that requires $\Omega(\sqrt{N}/n^3)$ steps.

Theorem

Any randomized oblivious routing algorithm for permutation routing on the $N = 2^n$ cube must use $\Omega(n)$ random bits to route an arbitrary permutation in $O(n)$ expected time.
Assume that the algorithm uses k random bits. It can choose between no more than 2^k possible deterministic executions. There is a deterministic execution \tilde{A} that is chosen with probability $\geq 1/2^k$. Let π be an input permutation that requires $\Omega(\sqrt{N}/n^3)$ steps in \tilde{A}. The expected running time of this input permutation on the randomized algorithm is $\Omega(\sqrt{N}/(2^k n^3))$.
The First and Second Moment

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>For an integer random variable X,</td>
</tr>
<tr>
<td>• $Pr(X > 0) = Pr(X \geq 1) \leq E[X]$</td>
</tr>
<tr>
<td>• $Pr(X = 0) \leq Pr(</td>
</tr>
</tbody>
</table>
Let $G_{n,p} = (V, E)$ be a random graph generated as follows:
- The graph has n nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it is adjacent to no edges.

If $p = 0$ all vertices are isolated (have no edges). If $p = 1$ no vertex is isolated. What can we say for $0 < p < 1$?
Application: Number of Isolated Nodes

Let $G_{n,p} = (V, E)$ be a random graph generated as follows:

- The graph has n nodes.
- Each of the $\binom{n}{2}$ pairs of vertices are connected by an edge with probability p independently of any other edge in the graph.

A node is isolated if it has no edges.

Theorem

For any function $w(n) \to \infty$

- If $p = \frac{\log n - w(n)}{n}$, then whp the graph has isolated nodes.
- If $p = \frac{\log n + w(n)}{n}$, then whp the graph has no isolated nodes.
Proof

For \(i = 1, \ldots, n \), let \(X_i = 1 \) if node \(i \) is isolated, otherwise \(X_i = 0 \). Let \(X = \sum_{i=1}^{n} X_i \).

\[E[X] = n(1 - p)^{n-1} \]

For \(p = \frac{\log n + w(n)}{n} \)

\[E[X] = n(1 - p)^{n-1} \leq e^{\log n - (n-1)p} \leq e^{-w(n)} \to 0 \]

Thus, for \(p = \frac{\log n + w(n)}{n} \),

\[Pr(X > 0) \leq E[X] \to 0 \]
To use the second moment method we need to bound $\text{Var}[x]$.

$$\text{Var}[X_i] \leq E[X_i^2] = E[X_i] = (1 - p)^{n-1}$$

$$\sum_{i \neq j} \text{Cov}(X_i, X_j) = (1 - p)^{2n-3} - (1 - p)^{2n-2}$$

$$\text{Var}[X] \leq \sum_{i=1}^{n} \text{Var}[X_i] + \sum_{i \neq j} \text{Cov}(X_i, X_j)$$

$$= n(1 - p)^{n-1} + n(n - 1)(1 - p)^{2n-3} - n(n - 1)(1 - p)^{2n-2}$$

$$= n(1 - p)^{n-1} + n(n - 1)p(1 - p)^{2n-3}$$
\[
\begin{align*}
\text{Var}[X] & = \sum_{i=1}^{n} \text{Var}[X_i] + \sum_{i \neq j} \text{Cov}(X_i, X_i) \\
& = n(1 - p)^{n-1} + n(n - 1)p(1 - p)^{2n-3}
\end{align*}
\]

\[
\begin{align*}
\text{Pr}(X = 0) & \leq \frac{\text{Var}[X]}{(E[X])^2} \\
& = \frac{n(1 - p)^{n-1} + n(n - 1)p(1 - p)^{2n-3}}{n^2(1 - p)^{2n-2}} \\
& = \left(1 - \frac{1}{n}\right) \frac{p}{1 - p} + \frac{1}{n(1 - p)^{n-1}}
\end{align*}
\]
For \(p = \frac{\log n - w(n)}{n} \),

\[
Pr(X = 0) \leq \frac{\text{Var}[X]}{(E[X])^2} = \left(1 - \frac{1}{n}\right) \frac{p}{1 - p} + \frac{1}{n(1 - p)^{n-1}} \to 0
\]

Since

\[
n(1 - p)^{n-1} \geq ne^{-p(n-1)}(1 - \frac{p^2}{n}) \geq \frac{1}{2}e^{w(n)}
\]

We use: for \(|X| \leq 1\)

\[
e^{x} \left(1 - \frac{x^2}{n}\right) \leq \left(1 + \frac{x}{n}\right)^n \leq e^x
\]