Large Deviation Bounds

A typical probability theory statement:

Theorem (The Central Limit Theorem)

Let X_1, \ldots, X_n be independent identically distributed random variables with common mean μ and variance σ^2. Then

$$\lim_{n \to \infty} \Pr\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} \leq z \right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.$$

A typical CS probabilistic tool:

Theorem (Chernoff Bound)

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $\Pr(X_i = 1) = p_i$. Let $\mu = \sum_{i=1}^{n} p_i$, then

$$\Pr\left(\sum_{i=1}^{n} X_i \geq (1 + \delta)\mu \right) \leq e^{-\mu \delta^2 / 3}.$$
We build on Basic Probability Theory

Reminder:

<table>
<thead>
<tr>
<th>Theorem (Markov Inequality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a random variable X is non-negative ($X \geq 0$) then</td>
</tr>
<tr>
<td>$\text{Prob}(X \geq a) \leq \frac{E[X]}{a}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Chebyshev’s Inequality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any random variable X.</td>
</tr>
<tr>
<td>$\text{Prob}(</td>
</tr>
</tbody>
</table>

Both bounds are general but relatively weak.
The Basic Idea of Large Deviation Bounds:

For any random variable X, by Markov inequality we have:

For any $t > 0$,

$$Pr(X \geq a) = Pr(e^{tX} \geq e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}}.$$

Similarly, for any $t < 0$

$$Pr(X \leq a) = Pr(e^{tX} \geq e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}}.$$
The General Scheme:

We obtain specific bounds for particular conditions/distributions by

1. computing $E[e^{tX}]$
2. optimizing

$$Pr(X \geq a) \leq \min_{t>0} \frac{E[e^{tX}]}{e^{ta}}$$

$$Pr(X \leq a) \leq \min_{t<0} \frac{E[e^{tX}]}{e^{ta}}.$$

3. symplifying
Chernof Bound - Large Deviation Bound

Theorem

Let X_1, \ldots, X_n be independent, identically distributed, $0 - 1$ random variables with $\Pr(X_i = 1) = E[X_i] = p$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$, then for any $\delta \in [0, 1]$ we have

$$\Pr(\bar{X}_n \geq (1 + \delta)p) \leq e^{-np\delta^2/3}$$

and

$$\Pr(\bar{X}_n \leq (1 - \delta)p) \leq e^{-np\delta^2/2}.$$
Theorem

Let X_1, \ldots, X_n be independent, identically distributed, $0-1$ random variables with $\Pr(X_i = 1) = E[X_i] = p_i$. Let $\mu = \sum_{i=1}^{n} p_i$, then for any $\delta \in [0, 1]$ we have

\[
\Pr\left(\sum_{i=1}^{n} X_i \geq (1 + \delta)\mu \right) \leq e^{-\mu \delta^2 / 3}
\]

and

\[
\Pr\left(\sum_{i=1}^{n} X_i \leq (1 - \delta)\mu \right) \leq e^{-\mu \delta^2 / 2}.
\]
Consider \(n \) coin flips. Let \(X \) be the number of heads. Markov Inequality gives

\[
Pr \left(X \geq \frac{3n}{4} \right) \leq \frac{n/2}{3n/4} \leq \frac{2}{3}.
\]

Using the Chebyshev’s bound we have:

\[
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) \leq \frac{4}{n}.
\]

Using the Chernoff bound in this case, we obtain

\[
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) = Pr \left(X \geq \frac{n}{2} \left(1 + \frac{1}{2} \right) \right) + Pr \left(X \leq \frac{n}{2} \left(1 - \frac{1}{2} \right) \right) \leq e^{-\frac{1}{3} \frac{n}{2} \frac{1}{4}} + e^{-\frac{1}{2} \frac{n}{2} \frac{1}{4}} \leq 2e^{-\frac{n}{24}}.
\]
The moment generating function of a random variable X is defined for any real value t as

$$M_X(t) = E[e^{tX}].$$
Theorem

Let X be a random variable with moment generating function $M_X(t)$. Assuming that exchanging the expectation and differentiation operands is legitimate, then for all $n \geq 1$

$$\mathbb{E}[X^n] = M_X^{(n)}(0),$$

where $M_X^{(n)}(0)$ is the n-th derivative of $M_X(t)$ evaluated at $t = 0$.

Proof.

$$M_X^{(n)}(t) = \mathbb{E}[X^ne^{tX}].$$

Computed at $t = 0$ we get

$$M_X^{(n)}(0) = \mathbb{E}[X^n].$$
Theorem

Let X and Y be two random variables. If

$$M_X(t) = M_Y(t)$$

for all $t \in (-\delta, \delta)$ for some $\delta > 0$, then X and Y have the same distribution.

Theorem

If X and Y are independent random variables then

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

Proof.

$$M_{X+Y}(t) = \mathbb{E}[e^{t(X+Y)}] = \mathbb{E}[e^{tX}]\mathbb{E}[e^{tY}] = M_X(t)M_Y(t).$$
Chernof Bound - Large Deviation Bound

Theorem

Let X_1, \ldots, X_n be independent, identically distributed, $0-1$ random variables with $\Pr(X_i = 1) = E[X_i] = p$. Let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

then for any $\delta \in [0, 1]$ we have

$$\Pr(\bar{X}_n \geq (1 + \delta)p) \leq e^{-np\delta^2/3}$$

and

$$\Pr(\bar{X}_n \leq (1 - \delta)p) \leq e^{-np\delta^2/2}.$$
Theorem

Let X_1, \ldots, X_n be independent, identically distributed, 0–1 random variables with $Pr(X_i = 1) = E[X_i] = p_i$. Let $\mu = \sum_{i=1}^{n} p_i$, then for any $\delta \in [0, 1]$ we have

$$\text{Prob}(\sum_{i=1}^{n} X_i \geq (1 + \delta)\mu) \leq e^{-\mu\delta^2/3}$$

and

$$\text{Prob}(\sum_{i=1}^{n} X_i \leq (1 - \delta)\mu) \leq e^{-\mu\delta^2/2}.$$
Consider \(n \) coin flips. Let \(X \) be the number of heads. Markov Inequality gives

\[
Pr \left(X \geq \frac{3n}{4} \right) \leq \frac{n/2}{3n/4} \leq \frac{2}{3}.
\]

Using the Chebyshev’s bound we have:

\[
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) \leq \frac{4}{n}.
\]

Using the Chernoff bound in this case, we obtain

\[
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) = Pr \left(X \geq \frac{n}{2} \left(1 + \frac{1}{2} \right) \right) + Pr \left(X \leq \frac{n}{2} \left(1 - \frac{1}{2} \right) \right) \leq e^{-\frac{n}{24}} + e^{-\frac{1}{2} \frac{n}{2}} \leq 2e^{-\frac{n}{24}}.
\]
Chernoff Bound for Sum of Bernoulli Trials

Theorem

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $\Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^n X_i$ and $\mu = \sum_{i=1}^n p_i$.

- For any $\delta > 0$,
 \[
 \Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu. \tag{1}
 \]

- For $0 < \delta \leq 1$,
 \[
 \Pr(X \geq (1 + \delta)\mu) \leq e^{-\mu\delta^2/3}. \tag{2}
 \]

- For $R \geq 6\mu$,
 \[
 \Pr(X \geq R) \leq 2^{-R}. \tag{3}
 \]
Chernoff Bound for Sum of Bernoulli Trials

Let X_1, \ldots, X_n be a sequence of independent Bernoulli trials with $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^{n} X_i$, and let

$$
\mu = \mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p_i.
$$

For each X_i:

$$
M_{X_i}(t) = \mathbb{E}[e^{tX_i}] \\
= p_i e^t + (1 - p_i) \\
= 1 + p_i (e^t - 1) \\
\leq e^{p_i (e^t - 1)}.
$$
\[M_{X_i}(t) = \mathbb{E}[e^{tX_i}] \leq e^{p_i(e^t-1)}. \]

Taking the product of the \(n \) generating functions we get for \(X = \sum_{i=1}^{n} X_i \)

\[
M_X(t) = \prod_{i=1}^{n} M_{X_i}(t) \\
\leq \prod_{i=1}^{n} e^{p_i(e^t-1)} \\
= e^{\sum_{i=1}^{n} p_i(e^t-1)} \\
= e^{(e^t-1)\mu}
\]
\[M_X(t) = \mathbb{E}[e^{tX}] = e^{(e^t - 1)\mu} \]

Applying Markov’s inequality we have for any \(t > 0 \)

\[
\Pr(X \geq (1 + \delta)\mu) = \Pr(e^{tX} \geq e^{t(1+\delta)\mu}) \\
\leq \frac{\mathbb{E}[e^{tX}]}{e^{t(1+\delta)\mu}} \\
\leq \frac{e^{(e^t - 1)\mu}}{e^{t(1+\delta)\mu}}
\]

For any \(\delta > 0 \), we can set \(t = \ln(1 + \delta) > 0 \) to get:

\[
\Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^{\delta}}{(1 + \delta)(1+\delta)} \right)^\mu.
\]

This proves (1).
We show that for $0 < \delta < 1$,

$$\frac{e^{\delta}}{(1 + \delta)^{(1+\delta)}} \leq e^{-\delta^2/3}$$

or that

$$f(\delta) = \delta - (1 + \delta) \ln(1 + \delta) + \delta^2/3 \leq 0$$

in that interval. Computing the derivatives of $f(\delta)$ we get

$$f'(\delta) = 1 - \frac{1 + \delta}{1 + \delta} - \ln(1 + \delta) + \frac{2}{3} \delta = - \ln(1 + \delta) + \frac{2}{3} \delta,$$

$$f''(\delta) = - \frac{1}{1 + \delta} + \frac{2}{3}.$$

$f''(\delta) < 0$ for $0 \leq \delta < 1/2$, and $f''(\delta) > 0$ for $\delta > 1/2$. $f'(\delta)$ first decreases and then increases over the interval $[0, 1]$. Since $f'(0) = 0$ and $f'(1) < 0$, $f'(\delta) \leq 0$ in the interval $[0, 1]$. Since $f(0) = 0$, we have that $f(\delta) \leq 0$ in that interval. This proves (2).
For $R \geq 6 \mu$, $\delta \geq 5$.

\[
Pr(X \geq (1 + \delta)\mu) \leq \left(\frac{e^\delta}{(1 + \delta)(1+\delta)}\right)^\mu \\
\leq \left(\frac{e}{6}\right)^R \\
\leq 2^{-R},
\]

that proves (3).
Theorem

Let X_1, \ldots, X_n be independent Bernoulli random variables such that $Pr(X_i = 1) = p_i$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = E[X]$.

For $0 < \delta < 1$:

- \[Pr(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1 - \delta)(1-\delta)} \right)^\mu . \]
 \[(4) \]

- \[Pr(X \leq (1 - \delta)\mu) \leq e^{-\mu\delta^2/2}. \]
 \[(5) \]
Using Markov’s inequality, for any $t < 0$,

$$Pr(X \leq (1 - \delta)\mu) = Pr(e^{tX} \geq e^{(1-\delta)t\mu})$$

$$\leq \frac{E[e^{tX}]}{e^{t(1-\delta)\mu}}$$

$$\leq \frac{e^{(e^t-1)\mu}}{e^{t(1-\delta)\mu}}$$

For $0 < \delta < 1$, we set $t = \ln(1 - \delta) < 0$ to get:

$$Pr(X \leq (1 - \delta)\mu) \leq \left(\frac{e^{-\delta}}{(1 - \delta)(1-\delta)}\right)^\mu$$

This proves (4).

We need to show:

$$f(\delta) = -\delta - (1 - \delta)\ln(1 - \delta) + \frac{1}{2}\delta^2 \leq 0.$$
We need to show:

\[f(\delta) = -\delta - (1 - \delta) \ln(1 - \delta) + \frac{1}{2} \delta^2 \leq 0. \]

Differentiating \(f(\delta) \) we get

\[f'(\delta) = \ln(1 - \delta) + \delta, \]
\[f''(\delta) = -\frac{1}{1-\delta} + 1. \]

Since \(f''(\delta) < 0 \) for \(\delta \in (0, 1) \), \(f'(\delta) \) decreasing in that interval. Since \(f'(0) = 0 \), \(f'(\delta) \leq 0 \) for \(\delta \in (0, 1) \). Therefore \(f(\delta) \) is non increasing in that interval. \(f(0) = 0 \). Since \(f(\delta) \) is non increasing for \(\delta \in [0, 1) \), \(f(\delta) \leq 0 \) in that interval, and (5) follows.
Example: Coin flips

Let X be the number of heads in a sequence of n independent fair coin flips.

$$
Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{1}{2} \sqrt{6n \ln n} \right)
= Pr \left(X \geq \frac{n}{2} \left(1 + \sqrt{\frac{6 \ln n}{n}} \right) \right)
+ Pr \left(X \leq \frac{n}{2} \left(1 - \sqrt{\frac{6 \ln n}{n}} \right) \right)
\leq e^{-\frac{1}{3} \frac{n}{2} \frac{6 \ln n}{n}} + e^{-\frac{1}{2} \frac{n}{2} \frac{6 \ln n}{n}} \leq \frac{2}{n}.
$$

Note that the standard deviation is $\sqrt{n/4}$.
Markov Inequality gives

\[\Pr \left(X \geq \frac{3n}{4} \right) \leq \frac{n/2}{3n/4} \leq \frac{2}{3}. \]

Using the Chebyshev’s bound we have:

\[\Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) \leq \frac{4}{n}. \]

Using the Chernoff bound in this case, we obtain

\[
\Pr \left(\left| X - \frac{n}{2} \right| \geq \frac{n}{4} \right) = \Pr \left(X \geq \frac{n}{2} \left(1 + \frac{1}{2}\right) \right) \\
+ \Pr \left(X \leq \frac{n}{2} \left(1 - \frac{1}{2}\right) \right) \\
\leq e^{-\frac{1}{3} \frac{n}{2^4}} + e^{-\frac{1}{2} \frac{n}{2^4}} \\
\leq 2e^{-\frac{n}{24}}.
\]
Example: estimate the value of π

- Choose X and Y independently and uniformly at random in $[0, 1]$.
- Let
 \[Z = \begin{cases}
 1 & \text{if } \sqrt{X^2 + Y^2} \leq 1, \\
 0 & \text{otherwise},
\end{cases} \]

- $\frac{1}{2} \leq \Pr(Z = 1) = \frac{\pi}{4} \leq 1$.
- $4\mathbb{E}[Z] = \pi$.

Let Z_1, \ldots, Z_m be the values of m independent experiments.

$W_m = \sum_{i=1}^{m} Z_i$.

$$E[W_m] = E\left[\sum_{i=1}^{m} Z_i\right] = \sum_{i=1}^{m} E[Z_i] = \frac{m\pi}{4},$$

$W'_m = \frac{4}{m} W_m$ is an unbiased estimate for π (i.e. $E[W'_m] = \pi$)

How many samples do we need to obtain a good estimate?

$$\Pr(|W'_m - \pi| \geq \epsilon) = ?$$
Example: Estimating a Parameter

- Evaluating the probability that a particular DNA mutation occurs in the population.
- Given a DNA sample, a lab test can determine if it carries the mutation.
- The test is expensive and we would like to obtain a relatively reliable estimate from a minimum number of samples.
- \(p \) = the unknown value;
- \(n \) = number of samples, \(\hat{p}n \) had the mutation.
- Given sufficient number of samples we expect the value \(p \) to be in the neighborhood of sampled value \(\hat{p} \), but we cannot predict any single value with high confidence.
Confidence Interval

Instead of predicting a single value for the parameter we give an interval that is likely to contain the parameter.

Definition

A $1 - q$ confidence interval for a parameter T is an interval $[\tilde{p} - \delta, \tilde{p} + \delta]$ such that

$$Pr(T \in [\tilde{p} - \delta, \tilde{p} + \delta]) \geq 1 - q.$$

We want to minimize 2δ and q, with minimum n. Using $\tilde{p}n$ as our estimate for pn, we need to compute δ and q such that

$$Pr(p \in [\tilde{p} - \delta, \tilde{p} + \delta]) = Pr(np \in [n(\tilde{p} - \delta), n(\tilde{p} + \delta)]) \geq 1 - q.$$
The random variable here is the interval $[\tilde{p} - \delta, \tilde{p} + \delta]$ (or the value \tilde{p}), while p is a fixed (unknown) value.

$n\tilde{p}$ has a binomial distribution with parameters n and p, and $\mathbb{E}[\tilde{p}] = p$. If $p \not\in [\tilde{p} - \delta, \tilde{p} + \delta]$ then we have one of the following two events:

1. If $p < \tilde{p} - \delta$, then $n\tilde{p} \geq n(p + \delta) = np \left(1 + \frac{\delta}{p}\right)$, or $n\tilde{p}$ is larger than its expectation by a $\frac{\delta}{p}$ factor.

2. If $p > \tilde{p} + \delta$, then $n\tilde{p} \leq n(p - \delta) = np \left(1 - \frac{\delta}{p}\right)$, and $n\tilde{p}$ is smaller than its expectation by a $\frac{\delta}{p}$ factor.
\[
\begin{align*}
\Pr(p \not\in [\tilde{p} - \delta, \tilde{p} + \delta]) &= \Pr \left(n\tilde{p} \leq np \left(1 - \frac{\delta}{p} \right) \right) + \Pr \left(n\tilde{p} \geq np \left(1 + \frac{\delta}{p} \right) \right) \\
&\leq e^{-\frac{1}{2}np\left(\frac{\delta}{p} \right)^2} + e^{-\frac{1}{3}np\left(\frac{\delta}{p} \right)^2} \\
&= e^{-\frac{n\delta^2}{2p}} + e^{-\frac{n\delta^2}{3p}}.
\end{align*}
\]

But the value of \(p \) is unknown, A simple solution is to use the fact that \(p \leq 1 \) to prove

\[
\Pr(p \not\in [\tilde{p} - \delta, \tilde{p} + \delta]) \leq e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}}.
\]

Setting \(q = e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}} \), we obtain a tradeoff between \(\delta, n, \) and the error probability \(q \).
\[q = e^{-\frac{n\delta^2}{2}} + e^{-\frac{n\delta^2}{3}} \]

If we want to obtain a \(1 - q \) confidence interval \([\tilde{p} - \delta, \tilde{p} + \delta]\),

\[n \geq \frac{3}{\delta^2} \ln \frac{2}{q} \]

samples are enough.
Chernoff’s vs. Chebyshev’s Inequality

Assume for all i we have $p_i = p; 1 - p_i = q$.

$$\mu = \mathbb{E}[X] = np$$

$$\text{Var}[X] = npq$$

If we use Chebyshev’s Inequality we get

$$\Pr(|X - \mu| > \delta \mu) \leq \frac{npq}{\delta^2 \mu^2} = \frac{npq}{\delta^2 n^2 p^2} = \frac{q}{\delta^2 \mu}$$

Chernoff bound gives

$$\Pr(|X - \mu| > \delta \mu) \leq 2e^{-\mu \delta^2 / 3}.$$
Set Balancing

Given an $n \times n$ matrix A with entries in $\{0, 1\}$, let

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
=
\begin{pmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
\end{pmatrix}.
\]

Find a vector \bar{b} with entries in $\{-1, 1\}$ that minimizes

\[
\|A\bar{b}\|_{\infty} = \max_{i=1,\ldots,n} |c_i|.
\]
Theorem

For a random vector \vec{b}, with entries chosen independently and with equal probability from the set $\{-1, 1\}$,

$$Pr(\|A\vec{b}\|_{\infty} \geq \sqrt{4n \ln n}) \leq \frac{2}{n}.$$

The $\sum_{i=1}^{n} a_{j,i}b_{i}$ (excluding the zero terms) is a sum of independent $-1, 1$ random variable. We need a bound on such sum.
Chernoff Bound for Sum of \(\{-1, +1\} \) Random Variables

Theorem

Let \(X_1, \ldots, X_n \) be independent random variables with

\[
Pr(X_i = 1) = Pr(X_i = -1) = \frac{1}{2}.
\]

Let \(X = \sum_{i=1}^{n} X_i \). For any \(a > 0 \),

\[
Pr(X \geq a) \leq e^{-\frac{a^2}{2n}}.
\]

deo Moivre – Laplace approximation: For any \(k \), such that \(|k - np| \leq a \)

\[
\binom{n}{k} p^k (1 - p)^{n-k} \approx \frac{1}{\sqrt{2\pi np(1-p)}} e^{-\frac{a^2}{2np(1-p)}}
\]
For any $t > 0$,

$$E[e^{tx_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t}.$$

$$e^t = 1 + t + \frac{t^2}{2!} + \cdots + \frac{t^i}{i!} + \cdots$$

and

$$e^{-t} = 1 - t + \frac{t^2}{2!} + \cdots + (-1)^i \frac{t^i}{i!} + \cdots$$

Thus,

$$E[e^{tx_i}] = \frac{1}{2}e^t + \frac{1}{2}e^{-t} = \sum_{i \geq 0} \frac{t^{2i}}{(2i)!}$$

$$\leq \sum_{i \geq 0} \frac{(\frac{t^2}{2})^i}{i!} = e^{t^2/2}$$
\[E[e^{tX}] = \prod_{i=1}^{n} E[e^{tX_i}] \leq e^{nt^2/2}, \]

\[Pr(X \geq a) = Pr(e^{tX} > e^{ta}) \leq \frac{E[e^{tX}]}{e^{ta}} \leq e^{t^2n/2-ta}. \]

Setting \(t = a/n \) yields

\[Pr(X \geq a) \leq e^{-\frac{a^2}{2n}}. \]
By symmetry we also have

Corollary

Let $X_1, ..., X_n$ be independent random variables with

$$Pr(X_i = 1) = Pr(X_i = -1) = \frac{1}{2}.$$

Let $X = \sum_{i=1}^{n} X_i$. Then for any $a > 0$,

$$Pr(|X| > a) \leq 2e^{-\frac{a^2}{2n}}.$$
For a random vector \vec{b}, with entries chosen independently and with equal probability from the set $\{-1, 1\}$,

$$Pr(\|A\vec{b}\|_\infty \geq \sqrt{4n \ln n}) \leq \frac{2}{n} \quad (6)$$

- Consider the i-th row $\vec{a}_i = a_{i,1}, \ldots, a_{i,n}$.
- Let k be the number of 1's in that row.
- $Z_i = \sum_{j=1}^{k} a_{i,j} b_{i,j}$.
- If $k \leq \sqrt{4n \ln n}$ then clearly $Z_i \leq \sqrt{4n \ln n}$.
If \(k > \sqrt{4n \log n} \), the \(k \) non-zero terms in the sum \(Z_i \) are independent random variables, each with probability \(\frac{1}{2} \) of being either \(+1\) or \(-1\).

Using the Chernoff bound:

\[
Pr \left\{ |Z_i| > \sqrt{4n \log n} \right\} \leq 2e^{-4n \log n/(2k)} \leq \frac{2}{n^2},
\]

where we use the fact that \(n \geq k \).

The result follows by union bound (\(n \) rows).
Hoeffding’s Inequality

Large deviation bound for more general random variables:

Theorem (Hoeffding’s Inequality)

Let X_1, \ldots, X_n be independent random variables such that for all $1 \leq i \leq n$, $E[X_i] = \mu$ and $Pr(a \leq X_i \leq b) = 1$. Then

$$Pr\left(\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| \geq \epsilon \right) \leq 2e^{-2n\epsilon^2/(b-a)^2}$$

Lemma (Hoeffding’s Lemma)

(Hoeffding’s Lemma) Let X be a random variable such that $Pr(X \in [a, b]) = 1$ and $E[X] = 0$. Then for every $\lambda > 0$,

$$E[E^{\lambda X}] \leq e^{\lambda^2(a-b)^2}/8.$$
Proof of the Lemma

Since \(f(x) = e^{\lambda x} \) is a convex function, for any \(\alpha \in (0, 1) \) and \(x \in [a, b] \),
\[
f(X) \leq \alpha f(a) + (1 - \alpha)f(b).
\]
Thus, for \(\alpha = \frac{b - x}{b - a} \in (0, 1) \),
\[
e^{\lambda x} \leq \frac{b - x}{b - a} e^{\lambda a} + \frac{x - a}{b - a} e^{\lambda b}.
\]
Taking expectation, and using \(\mathbb{E}[X] = 0 \), we have
\[
E[e^{\lambda X}] \leq \frac{b}{b - a} e^{\lambda a} + \frac{a}{b - a} e^{\lambda b} \leq e^{\lambda^2 (b - a)^2 / 8}.
\]
Proof of the Bound

Let $Z_i = X_i - E[X_i]$ and $Z = \frac{1}{n} \sum_{i=1}^{n} X_i$.

$$
Pr(Z \geq \epsilon) \leq e^{-\lambda \epsilon} E[e^{\lambda Z}] \leq e^{-\lambda \epsilon} \prod_{i=1}^{n} E[e^{\lambda X_i/n}] \leq e^{-\lambda \epsilon + \frac{\lambda^2 (b-a)^2}{8n}}
$$

Set $\lambda = \frac{4n \epsilon}{(b-a)^2}$ gives

$$
Pr\left(\left|\frac{1}{n} \sum_{i=1}^{n} X_i - \mu\right| \geq \epsilon\right) = Pr(Z \geq \epsilon) \leq 2e^{-2n \epsilon^2/(b-a)^2}
$$
A More General Version

Theorem

Let X_1, \ldots, X_n be independent random variables with $E[X_i] = \mu_i$ and $Pr(B_i \leq X_i \leq B_i + c_i) = 1$, then

$$Pr(|\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i| \geq \epsilon) \leq e^{-\frac{2\epsilon^2}{\sum_{i=1}^{n} c_i^2}}$$
Application: Job Completion

We have n jobs, job i has expected run-time μ_i. We terminate job i if it runs $\beta \mu_i$ time. When will the machine will be free of jobs?

$X_i =$ execution time of job i. $0 \leq X_i \leq \beta \mu_i$.

$$Pr(\left| \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \mu_i \right| \geq \epsilon \sum_{i=1}^{n} \mu_i) \leq 2e^{\frac{-2\epsilon^2 (\sum_{i=1}^{n} \mu_i)^2}{\sum_{i=1}^{n} \beta^2 \mu_i^2}}$$

Assume all $\mu_i = \mu$

$$Pr(\left| \sum_{i=1}^{n} X_i - n\mu \right| \geq \epsilon n\mu) \leq 2e^{\frac{-2\epsilon^2 n^2 \mu^2}{n\beta^2 \mu^2}} = 2e^{-2\epsilon^2 n/\beta^2}$$

Let $\epsilon = \beta \sqrt{\frac{\log n}{n}}$, then

$$Pr(\left| \sum_{i=1}^{n} X_i - n\mu \right| \geq \beta \mu \sqrt{n \log n}) \leq 2e^{\frac{-2\beta^2 \mu^2 n \log n}{n\beta^2 \mu^2}} = \frac{2}{n^2}$$