The Monte Carlo Method

- Estimating through sampling (estimating π, p-value, integrals,...)
- The main difficulty - sampling sparse events
- Modifying the sample space
 - DNF counting
 - The general sampling to counting reduction
- The Markov Chain Monte Carlo (MCMC) method - Metropolis Algorithm
- Convergence rate
 - Coupling
 - Path coupling
 - Eigenvalues and conductance
The Monte Carlo Method

Example: estimate the value of π.

- Choose X and Y independently and uniformly at random in $[0, 1]$.
- Let

$$Z = \begin{cases}
1 & \text{if } \sqrt{X^2 + Y^2} \leq 1, \\
0 & \text{otherwise},
\end{cases}$$

- $\Pr(Z = 1) = \frac{\pi}{4}$.
- $4\mathbb{E}[Z] = \pi$.

• Let Z_1, \ldots, Z_m be the values of m independent experiments. $\mathcal{W} = \sum_{i=1}^{m} Z_i$.

• $E[\mathcal{W}] = E \left[\sum_{i=1}^{m} Z_i \right] = \sum_{i=1}^{m} E[Z_i] = \frac{m\pi}{4}$,

• $\mathcal{W}' = \frac{4}{m} \mathcal{W}$ is an unbiased estimate for π.

• $\Pr(|\mathcal{W}' - \pi| \geq \epsilon \pi) = \Pr \left(|\mathcal{W} - \frac{m\pi}{4}| \geq \frac{\epsilon m\pi}{4} \right)$

$$= \Pr \left(|\mathcal{W} - E[\mathcal{W}]| \geq \epsilon E[\mathcal{W}] \right) \leq 2e^{-\frac{1}{12}m\pi\epsilon^2}.$$
(ε, δ)-Approximation

Definition

A randomized algorithm gives an (ε, δ)-approximation for the value \(V \) if the output \(X \) of the algorithm satisfies

\[
\Pr(|X - V| \leq \epsilon V) \geq 1 - \delta.
\]

Theorem

Let \(X_1, \ldots, X_m \) be independent and identically distributed indicator random variables, with \(\mu = E[X_i] \). If \(m \geq \frac{3 \ln \frac{2}{\delta}}{\epsilon^2 \mu} \), then

\[
\Pr\left(\left|\frac{1}{m} \sum_{i=1}^{m} X_i - \mu\right| \geq \epsilon \mu\right) \leq \delta.
\]

That is, \(m \) samples provide an (ε, δ)-approximation for \(\mu \).
Monte Carlo Integration

We want to compute the definite (numeric) integral \(\int_a^b f(x) \, dx \) when the integral does not have a close form.

Let \(a = x_0, \ldots, x_N = b \) such that for all \(i \), \(x_{i+1} - x_i = \frac{b-a}{N} = \delta(N) \).

\[
\int_a^b f(x) \, dx = \lim_{\delta(N) \to 0} \sum_{i=0}^{N} f(x_i) \delta(N) = \lim_{N \to \infty} \frac{b-a}{N} \sum_{i=0}^{N} f(x_i).
\]

We need to estimate

\[
\bar{f} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} f(x_i),
\]

which is the expected value of \(f() \) in \([a, b]\).
We need to estimate

\[\bar{f} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N} f(x_i). \]

We choose \(N \) independent samples \(y_1, \ldots, y_N \) uniformly distributed in \([a, b]\).

\[E\left[\frac{1}{N} \sum_{i=1}^{N} f(y_i) \right] = \bar{f} \]

\[\text{Var}\left[\frac{1}{N} \sum_{i=1}^{N} f(y_i) \right] = \frac{1}{N} \text{Var}[f(x)] \]

\[\text{Pr}\left(\left| \frac{1}{N} \sum_{i=1}^{N} f(y_i) - \bar{f} \right| \geq \epsilon \right) \leq \frac{\text{Var}[f(x)]}{N\epsilon^2} \]
We are testing the hypothesis that at least 3 mutations in a set of 10 genes G is associated with having a disease D. We test 1000 patients and 700 had at least 3 mutations in G. How significant is this observation? What is the probability that we have such result at random? Let G be the set of all tested genes. Let n_i be the number of mutations in patient i. Let m_g be the number of observed mutations in g. We have a total of $\sum_i n_i = \sum_j m_j$ occurrences of mutations.
• We test 1000 patients and 700 had at least 3 mutations in G.
• How significant is this observation? What is the probability that we obtain such result at random?

1. $count = 0$
2. Repeat N times:
 3. 1. Permute the mutations among the patients, so patient i has n_i random mutations (subject to the totals).
 2. If 700 patients have 3 mutations in G then $count = count + 1$.
4. p-value $= \frac{count}{N}$.

• The observation is significant if p-value ≤ 0.05 (or 0.01).

How do we generate random assignments subjects to the sum (random contingency table)?
Approximate Counting

Example counting problems:

1. How many spanning trees in a graph?
2. How many perfect matchings in a graph?
3. How many independent sets in a graph?
4.
DNF Counting (Karp, Luby, Madras)

DNF = Disjunctive Normal Form.
Problem: How many satisfying assignments to a DNF formula?
A DNF formula is a disjunction of clauses.
Each clause is a conjunction of literals.

$$(\overline{x_1} \land x_2) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land \overline{x_3} \land x_4) \lor (x_3 \land \overline{x_4})$$

Compare to CNF.

$$(x_1 \lor x_2) \land (x_1 \lor \overline{x_3}) \land \cdots$$

m clauses, n variables
Let’s first convince ourselves that obvious approaches don’t work!
Question: Why?

We can reduce CNF satisfiability to DNF counting. The negation of a CNF formula is in DNF.

1. CNF formula f
2. get the DNF formula (\overline{f})
3. count satisfying assignments to \overline{f}
4. If it was 2^n, then f is unsatisfiable.
DNF counting is \#P complete

\#P is the counting analog of NP.
Any problem in \#P can be reduced (in polynomial time) to the DNF counting problem.
Example \#P complete problems:

1. How many Hamilton circuits does a graph have?
2. How many satisfying assignments does a CNF formula have?
3. How many perfect matchings in a graph?

What can we do about a hard problem?
(ϵ, δ) FPRAS for DNF counting

n variables, m clauses.

FPRAS = “Fully Polynomial Randomized Approximation Scheme”

Notation:

U: set of all possible assignments to variables

$|U| = 2^n$.

$H \subset U$: set of satisfying assignments

Want to estimate $Y = |H|$

Give $\epsilon > 0$, $\delta > 0$, find estimate X such that

1. $\Pr[|X - Y| > \epsilon Y] < \delta$

2. Algorithm should be polynomial in $1/\epsilon$, $1/\delta$, n and m.
Monte Carlo method

Here’s the obvious scheme.
1. Repeat N times:
 1.1. Sample x randomly from U
 1.2. Count a success if $x \in H$
2. Return “fraction of successes” $\times |U|$.

Question: How large should N be?
We have to evaluate the probability of our estimate being good.
Let $\rho = \frac{|H|}{|U|}$.

$Z_i = 1$ if i-th trial was successful

$$Z_i = \begin{cases}
1 & \text{with probability } \rho \\
0 & \text{with probability } 1 - \rho
\end{cases}$$

$Z = \sum_{i=1}^{N} Z_i$ is a binomial r.v

$E[Z] = N\rho$

$X = \frac{Z}{N} |U|$ is our estimate of $|H|$
Probability that our algorithm succeeds

Recall: X denotes our estimate of $|H|$.

\[
\Pr[(1 - \epsilon)|H| < X < (1 + \epsilon)|H|] \\
= \Pr[(1 - \epsilon)|H| < Z|U|/N < (1 + \epsilon)|H|] \\
= \Pr[(1 - \epsilon)N\rho < Z < (1 + \epsilon)N\rho] \\
> 1 - e^{-N\rho\epsilon^2/3} - e^{-N\rho\epsilon^2/2} \\
> 1 - 2e^{-N\rho\epsilon^2/3}
\]

where we have used Chernoff bounds.

For an (ϵ, δ) approximation, this has to be greater than $1 - \delta$,

\[
2e^{-N\rho\epsilon^2/3} < \delta \\
N > \frac{3}{\rho\epsilon^2} \log \frac{2}{\delta}
\]
Theorem

Let $\rho = \frac{|H|}{|U|}$. Then the Monte Carlo method is an (ϵ, δ) approximation scheme for estimating $|H|$ provided that $N > \frac{3}{\rho \epsilon^2} \log \frac{2}{\delta}$.

Are we done? No! Why?
What’s wrong?

How large could \(\frac{1}{\rho} \) be?

\(\rho \) is the fraction of satisfying assignments.

1. The number of possible assignments is \(2^n \).
2. Maybe there are only a polynomial (in \(n \)) number of satisfying assignments.
3. So, \(\frac{1}{\rho} \) could be exponential in \(n \).

Question: An example where formula has only a few assignments?
The trick: Change the Sampling Space

Increase the hit rate (ρ)!

Sample from a different universe, ρ is higher, and all elements of H still represented.

What’s the new universe?

Notation: H_i set of assignments that satisfy clause i.

$H = H_1 \cup H_2 \cup \ldots \cup H_m$

Define a new universe

$$U = H_1 \biguplus H_2 \biguplus \ldots \biguplus H_m$$

\biguplus means *multiset union.*

Element of U is (v, i) where v is an assignment, i is the satisfied clause.
Example - Partition by clauses

\[(\overline{x_1} \land x_2) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land \overline{x_3} \land x_4) \lor (x_3 \land \overline{x_4})\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
More about the universe U

1. Element of U is (v, i) where v is an assignment, i is the satisfied clause.
2. U contains only the satisfying assignments.
3. U contains the same satisfying assignment many times.
 \[U = \{(v, i) | v \in H_i\} \]
4. Each satisfying assignment v appears in as many clauses as it satisfies.
One way of looking at U

Partition by clauses.
m partitions, partition i contains H_i.
Another way of looking at U

Partition by assignments (one region for each assignment v). Each partition corresponds to an assignment. Can we count the different (distinct) assignments?
Example - Partition by assignments

\[(\overline{x}_1 \land x_2) \lor (x_2 \land x_3) \lor (x_1 \land x_2 \land \overline{x}_3 \land x_4) \lor (x_3 \land \overline{x}_4)\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Crucial idea: For each assignment group, find a canonical element in U.
An element (v, i) is *canonical* if $f((v, i)) = 1$

$$f((v, i)) = \begin{cases}
1 & \text{if } i = \min\{j : v \in H_j\} \\
0 & \text{otherwise}
\end{cases}$$

For every assignment group, exactly one canonical element. So, count the number of canonical elements!
Note: could use any other definition as long as exactly one canonical element per assignment
Count canonical elements

Reiterating:

1. Number of satisfying assignments = Number of canonical elements.
2. Count number of canonical elements.
3. Back to old random sampling method for counting!
What is ρ?

Lemma

\[\rho \geq \frac{1}{m}, \text{(pretty large)}. \]

Proof:

\[|H| = |\bigcup_{i=1}^{m} H_i|, \text{ since } H \text{ is a normal union.} \]

So \[|H_i| \leq |H| \]

Recall \[U = H_1 \cup H_2 \cup \ldots \cup H_m \]

\[|U| = \sum_{i=1}^{m} |H_i|, \text{ since } U \text{ is a multiset union.} \]

\[|U| \leq m|H| \]

\[\rho = \frac{|H|}{|U|} \geq \frac{1}{m} \]
How to generate a random element in U?

Look at the partition of U by clauses.

Algorithm Select:

1. Pick a random clause weighted according to the area it occupies.

 $\Pr[i] = \frac{|H_i|}{|U|} = \frac{|H_i|}{\sum_{1}^{m} |H_j|}$

 $|H_i| = 2^{(n-k_i)}$ where k_i is the number of literals in clause i.

2. Choose a random satisfying assignment in H_i.
 - Fix the variables required by clause i.
 - Assign random values to the rest to get ν

(ν, i) is the random element.

Running time: $O(n)$.
How to test if canonical assignment?

Or how to evaluate $f((v, i))$?

Algorithm Test:

1. Test every clause to see if v satisfies it.

 $cov(v) = \{(v, j) | v \in H_j\}$

2. If (v, i) the smallest j in $cov(v)$, then $f(v, i) = 1$, else 0.

Running time: $O(nm)$.

Algorithm Coverage:

1. $s \leftarrow 0$ (number of successes)
2. Repeat N times:
 - Select (v, i) using Select.
 - if $f(v, i) = 1$ (check using Test) then success, increment s.
3. Return $s|U|/N$.

Number of samples needed is (from Theorem 3):

$$N = \frac{3}{\varepsilon^2 \rho} \ln \frac{2}{\delta} \leq \frac{3m}{\varepsilon^2} \ln \frac{2}{\delta}$$

Sampling, testing: polynomial in n and m

We have an FPRAS

Theorem

The Coverage algorithm yields an (ε, δ) approximation to $|H|$ provided that the number of samples $N \geq \frac{3m}{\varepsilon^2} \log \frac{2}{\delta}$.
Let H_1, \ldots, H_k be subsets of a finite set S. What is the size of $H = \bigcup_{i=1}^{k} H_i$?

Theorem

The Coverage algorithm yields an (ϵ, δ) approximation to $|H|$ provided that the number of samples $N \geq \frac{3k}{\epsilon^2} \log \frac{2}{\delta}$.

The Monte-Carlo Markov-Chain (MCMC) Method

Given a graph \(G = (V, E) \), an independent set \(I \) in \(G \) is a set of vertices connected by no edges in \(G \).
\(\Omega(G) = \) set of independent sets in \(G \).

\[|V| \leq |\Omega(G)| \leq 2^{|V|} \]

We compute an \((\epsilon, \delta)\)-approximation for \(|\Omega(G)|\).

Definition

A randomized algorithm gives an \((\epsilon, \delta)\)-approximation for the value \(V \) if the output \(X \) of the algorithm satisfies

\[\Pr(|X - V| \leq \epsilon V) \geq 1 - \delta. \]
Simple Monte-Carlo?

Theorem

Let \(X_1, \ldots, X_m \) be independent and identically distributed indicator random variables, with \(\mu = E[X_i] \). If \(m \geq \frac{3 \ln \frac{2}{\delta}}{\epsilon^2 \mu} \), then

\[
\Pr \left(\left| \frac{1}{m} \sum_{i=1}^{m} X_i - \mu \right| \geq \epsilon \mu \right) \leq \delta.
\]

That is, \(m \) samples provide an \((\epsilon, \delta)\)-approximation for \(\mu \).

If we sample sets of vertices in \(G \), the value of \(\mu \) can be exponentially small.

Can we sample from a different domain, such that the corresponding \(\mu = \Omega(1) \).
Counting Independent Sets

Input: a graph $G = (V, E)$. $|V| = n$, $|E| = m$.
Let e_1, \ldots, e_m be an arbitrary ordering of the edges.

$$G_i = (V, E_i), \text{ where } E_i = \{e_1, \ldots, e_i\}$$

$G = G_m$, $G_0 = (V, \emptyset)$ and G_{i-1} is obtained from G_i by removing a single edge.
$\Omega(G_i) = \text{the set of independent sets in } G_i$.

$$|\Omega(G)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \times \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \times \frac{|\Omega(G_{m-2})|}{|\Omega(G_{m-3})|} \times \cdots \times \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \times |\Omega(G_0)|.$$

$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}, \quad |\Omega(G)| = 2^n \prod_{i=1}^{m} r_i$$
Lemma

\(r_i \geq \frac{1}{2} \).

Proof.

\[\Omega(G_i) \subseteq \Omega(G_{i-1}). \]

Suppose that \(G_{i-1} \) and \(G_i \) differ in the edge \(\{u, v\} \).

An independent set in \(\Omega(G_{i-1}) \setminus \Omega(G_i) \) contains both \(u \) and \(v \). To bound the size of the set \(\Omega(G_{i-1}) \setminus \Omega(G_i) \), we associate each \(I \in \Omega(G_{i-1}) \setminus \Omega(G_i) \) with an independent set \(I \setminus \{v\} \in \Omega(G_i) \). An independent set \(I' \in \Omega(G_i) \) is associated with no more than one independent set \(I \cup \{v\} \in \Omega(G_{i-1}) \setminus \Omega(G_i) \), and thus \(|\Omega(G_{i-1}) \setminus \Omega(G_i)| \leq |\Omega(G_i)| \). It follows that

\[r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|} = \frac{|\Omega(G_i)|}{|\Omega(G_i)| + |\Omega(G_{i-1}) \setminus \Omega(G_i)|} \geq \frac{1}{2}. \]
Estimating r_i

Input: Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$.

Output: $\tilde{r}_i = \text{an approximation of } r_i$.

1. $X \leftarrow 0$.
2. Repeat for $M = 12m^2\epsilon^{-2} \ln \frac{2m}{\delta}$ independent trials:
 1. Generate an uniform sample from $\Omega(G_{i-1})$;
 2. If the sample is an independent set in G_i, let $X \leftarrow X + 1$.
3. Return $\tilde{r}_i \leftarrow \frac{X}{M}$.

Lemma

When $m \geq 1$ and $0 < \epsilon \leq 1$, the procedure for estimating r_i yields an estimate \tilde{r}_i that is $(\epsilon/2m, \delta/m)$-approximation for r_i.

- Our estimate is $2^n \prod_{i=1}^{m} \tilde{r}_i$.
- The true number is $|\Omega(G)| = 2^n \prod_{i=1}^{m} r_i$.
- To evaluate the error in our estimate we need to bound the ratio

$$R = \prod_{i=1}^{m} \frac{\tilde{r}_i}{r_i}.$$
Lemma

Suppose that for all \(i, 1 \leq i \leq m \), \(\tilde{r}_i \) is an \((\epsilon/2m, \delta/m)\)-approximation for \(r_i \). Then

\[
\Pr(|R - 1| \leq \epsilon) \geq 1 - \delta.
\]

For each \(1 \leq i \leq m \), we have

\[
\Pr \left(|\tilde{r}_i - r_i| \leq \frac{\epsilon}{2m r_i}\right) \geq 1 - \frac{\delta}{m}.
\]

Equivalently,

\[
\Pr \left(|\tilde{r}_i - r_i| > \frac{\epsilon}{2m r_i}\right) < \frac{\delta}{m}.
\]
By the union bound the probability that \(|\tilde{r}_i - r_i| > \frac{\epsilon}{2m} r_i\) for any \(i\) is at most \(\delta\), and hence \(|\tilde{r}_i - r_i| \leq \frac{\epsilon}{2m} r_i\) for all \(i\) with probability at least \(1 - \delta\). Equivalently,

\[
1 - \frac{\epsilon}{2m} \leq \frac{\tilde{r}_i}{r_i} \leq 1 + \frac{\epsilon}{2m}
\]

holds for all \(i\) with probability at least \(1 - \delta\). When these bounds hold for all \(i\), we can combine them to obtain

\[
1 - \epsilon \leq \left(1 - \frac{\epsilon}{2m}\right)^m \leq \prod_{i=1}^{m} \frac{\tilde{r}_i}{r_i} \leq \left(1 + \frac{\epsilon}{2m}\right)^m \leq (1 + \epsilon),
\]
Estimating r_i
Input: Graphs $G_{i-1} = (V, E_{i-1})$ and $G_i = (V, E_i)$.
Output: $\tilde{r}_i =$ an approximation of r_i.

1. $X \leftarrow 0$.
2. Repeat for $M = \frac{12m^2\varepsilon^{-2} \ln \frac{2m}{\delta}}{}$ independent trials:
 1. Generate an uniform sample from $\Omega(G_{i-1})$;
 2. If the sample is an independent set in G_i, let $X \leftarrow X + 1$.
3. Return $\tilde{r}_i \leftarrow \frac{X}{M}$.

How do we Generate an (almost) uniform sample from $\Omega(G_{i-1})$?
Definition

Let w be the (random) output of a sampling algorithm for a finite sample space Ω. The sampling algorithm generates an ϵ-uniform sample of Ω if, for any subset S of Ω,

$$\left| \Pr(w \in S) - \frac{|S|}{|\Omega|} \right| \leq \epsilon.$$

A sampling algorithm is a **fully polynomial almost uniform sampler** (FPAUS) for a problem if, given an input x and a parameter $\epsilon > 0$, it generates an ϵ-uniform sample of $\Omega(x)$, and it runs in time polynomial in $\ln \epsilon^{-1}$ and the size of the input x.
Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for independent sets in any graph, we can construct a fully polynomial randomized approximation scheme (FPRAS) for the number of independent sets in a graph G with maximum degree at most Δ.
Consider a Markov chain whose states are independent sets in a graph $G = (V, E)$:

1. X_0 is an arbitrary independent set in G.
2. To compute X_{i+1}:
 1. Choose a vertex v uniformly at random from V.
 2. If $v \in X_i$ then $X_{i+1} = X_i \setminus \{v\}$;
 3. if $v \not\in X_i$, and adding v to X_i still gives an independent set, then $X_{i+1} = X_i \cup \{v\}$;
 4. otherwise, $X_{i+1} = X_i$.

- The chain is irreducible
- The chain is aperiodic
- For $y \neq x$, $P_{x,y} = 1/|V|$ or 0.
Consider a finite, irreducible, and ergodic Markov chain on \(n \) states with transition matrix \(P \). If there are non-negative numbers \(\pi = (\pi_0, \ldots, \pi_n) \) such that \(\sum_{i=0}^{n} \pi_i = 1 \), and for any pair of states \(i, j \),

\[
\pi_i P_{i,j} = \pi_j P_{j,i},
\]

then \(\pi \) is the stationary distribution corresponding to \(P \).

Proof.

\[
\sum_{i=0}^{n} \pi_i P_{i,j} = \sum_{i=0}^{n} \pi_j P_{j,i} = \pi_j.
\]

Thus \(\pi \) satisfies \(\pi = \pi P \), and \(\sum_{i=0}^{n} \pi_i = 1 \), and \(\pi \) must be the unique stationary distribution of the Markov chain. \(\square \)
$N(x)$— set of neighbors of x. Let $M \geq \max_{x \in \Omega} |N(x)|$.

Lemma

Consider a Markov chain where for all x and y with $y \neq x$, $P_{x,y} = \frac{1}{M}$ if $y \in N(x)$, and $P_{x,y} = 0$ otherwise. Also, $P_{x,x} = 1 - \frac{|N(x)|}{M}$. If this chain is irreducible and aperiodic, then the stationary distribution is the uniform distribution.

Proof.

We show that the chain is time-reversible. For any $x \neq y$, if $\pi_x = \pi_y$, then

$$\pi_x P_{x,y} = \pi_y P_{y,x},$$

since $P_{x,y} = P_{y,x} = 1/M$. It follows that the uniform distribution $\pi_x = 1/|\Omega|$ is the stationary distribution. \qed
The Metropolis Algorithm

Assuming that we want to sample with non-uniform distribution. For example, we want the probability of an independent set of size i to be proportional to λ^i.

Consider a Markov chain on independent sets in $G = (V, E)$:

① X_0 is an arbitrary independent set in G.

② To compute X_{i+1}:

① Choose a vertex v uniformly at random from V.
② If $v \in X_i$ then set $X_{i+1} = X_i \setminus \{v\}$ with probability $\min(1, 1/\lambda)$;
③ if $v \notin X_i$, and adding v to X_i still gives an independent set, then set $X_{i+1} = X_i \cup \{v\}$ with probability $\min(1, \lambda)$;
④ otherwise, set $X_{i+1} = X_i$.
Lemma

For a finite state space Ω, let $M \geq \max_{x \in \Omega} |N(x)|$. For all $x \in \Omega$, let $\pi_x > 0$ be the desired probability of state x in the stationary distribution. Consider a Markov chain where for all x and y with $y \neq x$,

$$P_{x,y} = \frac{1}{M} \min \left(1, \frac{\pi_y}{\pi_x} \right)$$

if $y \in N(x)$, and $P_{x,y} = 0$ otherwise. Further, $P_{x,x} = 1 - \sum_{y \neq x} P_{x,y}$. Then if this chain is irreducible and aperiodic, the stationary distribution is given by the probabilities π_x.
Proof.

We show the chain is time-reversible. For any \(x \neq y \), if \(\pi_x \leq \pi_y \), then \(P_{x,y} = 1 \) and \(P_{y,x} = \pi_x / \pi_y \). It follows that \(\pi_x P_{x,y} = \pi_y P_{y,x} \).

Similarly, if \(\pi_x > \pi_y \), then \(P_{x,y} = \pi_y / \pi_x \) and \(P_{y,x} = 1 \), and it follows that \(\pi_x P_{x,y} = \pi_y P_{y,x} \).

Note that the Metropolis Algorithm only needs the ratios \(\pi_x / \pi_y \)'s.

In our construction, the probability of an independent set of size \(i \) is \(\lambda^i / B \) for \(B = \sum_x \lambda^{\text{size}(x)} \) although we may not know \(B \).
Coupling and MC Convergence

- An Ergodic Markov Chain converges to its stationary distribution.
- How long do we need to run the chain until we sample a state in almost the stationary distribution?
- How do we measure distance between distributions?
- How do we analyze speed of convergence?
Variation Distance

Definition

The *variation distance* between two distributions D_1 and D_2 on a countably finite state space S is given by

$$||D_1 - D_2|| = \frac{1}{2} \sum_{x \in S} |D_1(x) - D_2(x)|.$$

![Diagram](image)

Figure: The total area shaded by upward diagonal lines must equal the total areas shaded by downward diagonal lines, and the variation distance equals one of these two areas.
For any $A \subseteq S$, let $D_i(A) = \sum_{x \in A} D_i(x)$, for $i = 1, 2$. Then,

$$||D_1 - D_2|| = \max_{A \subseteq S} |D_1(A) - D_2(A)|.$$

Let $S^+ \subseteq S$ be the set of states such that $D_1(x) \geq D_2(x)$, and $S^- \subseteq S$ be the set of states such that $D_2(x) > D_1(x)$. Clearly

$$\max_{A \subseteq S} D_1(A) - D_2(A) = D_1(S^+) - D_2(S^+),$$

and

$$\max_{A \subseteq S} D_2(A) - D_1(A) = D_2(S^-) - D_1(S^-).$$

But since $D_1(S) = D_2(S) = 1$, we have

$$D_1(S^+) + D_1(S^-) = D_2(S^+) + D_2(S^-) = 1,$$

which implies that

$$D_1(S^+) - D_2(S^+) = D_2(S^-) - D_1(S^-).$$
\[
\max_{A \subseteq S} |D_1(A) - D_2(A)| = |D_1(S^+) - D_2(S^+)| = |D_1(S^-) - D_2(S^-)|.
\]

and

\[
|D_1(S^+) - D_2(S^+)| + |D_1(S^-) - D_2(S^-)| = \sum_{x \in S} |D_1(x) - D_2(x)|
\]

\[= 2\|D_1 - D_2\|,\]

we have

\[
\max_{A \subseteq S} |D_1(A) - D_2(A)| = \|D_1 - D_2\|,
\]
Rate of Convergence

Definition

Let π be the stationary distribution of a Markov chain with state space S. Let p_t^x represent the distribution of the state of the chain starting at state x after t steps. We define

$$
\Delta_x(t) = ||p_t^x - \pi||; \quad \Delta(t) = \max_{x \in S} \Delta_x(t).
$$

That is, $\Delta_x(t)$ is the variation distance between the stationary distribution and p_t^x, and $\Delta(t)$ is the maximum of these values over all states x.

We also define

$$
\tau_x(\epsilon) = \min \{ t : \Delta_x(t) \leq \epsilon \}; \quad \tau(\epsilon) = \max_{x \in S} \tau_x(\epsilon).
$$

That is, $\tau_x(\epsilon)$ is the first step t at which the variation distance between p_t^x and the stationary distribution is less than ϵ, and $\tau(\epsilon)$ is the maximum of these values over all states x.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let π be the stationary distribution of a Markov chain with state space S. Let p_t^x represent the distribution of the state of the chain starting at state x after t steps. We define $\Delta_x(t) =</td>
</tr>
</tbody>
</table>
Example: Shuffling Cards

Markov chain:

- States: orders of the deck of cards.
- Transitions: at each step choose one card, uniformly at random, and move to the top.
- Uniform stationary distribution (not time reversal, but fully symmetric).

How many transitions until the process is mixing?
A coupling of a Markov chain M with state space S is a Markov chain $Z_t = (X_t, Y_t)$ on the state space $S \times S$ such that

$$
\Pr(X_{t+1} = x' | Z_t = (x, y)) = \Pr(X_{t+1} = x' | X_t = x);
$$

$$
\Pr(Y_{t+1} = y' | Z_t = (x, y)) = \Pr(Y_{t+1} = y' | Y_t = y).
$$
The Coupling Lemma

Lemma (Coupling Lemma)

Let $Z_t = (X_t, Y_t)$ be a coupling for a Markov chain M on a state space S. Suppose that there exists a T so that for every $x, y \in S$,

$$\Pr(X_T \neq Y_T \mid X_0 = x, Y_0 = y) \leq \epsilon.$$

Then

$$\tau(\epsilon) \leq T.$$

That is, for any initial state, the variation distance between the distribution of the state of the chain after T steps and the stationary distribution is at most ϵ.
Proof.

Consider the coupling when Y_0 is chosen according to the stationary distribution and X_0 takes on any arbitrary value. For the given T and ϵ, and for any $A \subseteq S$

$$
\Pr(X_T \in A) \geq \Pr((X_T = Y_T) \cap (Y_T \in A))
= 1 - \Pr((X_T \neq Y_T) \cup (Y_T \notin A))
\geq (1 - \Pr(Y_T \notin A)) - \Pr(X_T \neq Y_T)
\geq \Pr(Y_T \in A) - \epsilon
= \pi(A) - \epsilon.
$$

Similarly,

$$
\Pr(X_T \notin A) \geq \pi(S \setminus A) - \epsilon
$$
or

$$
\Pr(X_T \in A) \leq \pi(A) + \epsilon
$$

It follows that

$$
\max_{x,A} |p_x^T(A) - \pi(A)| \leq \epsilon,
$$
Example: Shuffling Cards

• Markov chain:
 • States: orders of the deck of cards.
 • Transitions: at each step choose one card, uniformly at random, and move to the top.
 • Uniform stationary distribution

• Given two such chains: X_t and Y_t we define the coupling:
 • The first chain chooses a card uniformly at random and move it to the top.
 • The second chain move the same card (it may be in a different location) to the top.

• The probability that any card was not chosen by the first chain in $n \log n + cn$ steps is e^{-c}.

• After $n \log(n/\epsilon)$ steps the variation distance between our chain and the uniform distribution is bounded by ϵ.

$$\tau(\epsilon) \leq n \ln(n/\epsilon).$$
Example: Random Walks on the Hypercube

• Consider \(n \)-cube, with \(N = 2^n \) nodes. Let \(\bar{x} = (x_1, \ldots, x_n) \) be the binary representation of \(x \). Nodes \(x \) and \(y \) are connected by an edge iff \(\bar{x} \) and \(\bar{y} \) differ in exactly one bit.

• Markov chain on the \(n \)-cube: at each step, choose a coordinate \(i \) uniformly at random from \([1, n]\), and set \(x_i \) to 0 with probability \(1/2 \) and 1 with probability \(1/2 \).

• Coupling: both chains choose the same bit and give it the same value.

• The chains couple when all bits have been chosen.

• By the Coupling Lemma the mixing time satisfies

\[
\tau(\epsilon) \leq n \ln(n\epsilon^{-1}).
\]
Example: Sampling Independent Sets of a Given Size

Consider a Markov chain whose states are independent sets of size k in a graph $G = (V, E)$:

1. X_0 is an arbitrary independent set of size k in G.
2. To compute X_{i+1}:
 1. Choose uniformly at random $v \in X_t$ and $w \in V$.
 2. if $w \not\in X_i$, and $(X_t - \{v\}) \cup \{w\}$ is an independent set, then
 $X_{t+1} = (X_t - \{v\}) \cup \{w\}$
 3. otherwise, $X_{i+1} = X_i$.

- If the chain is irreducible
- The chain is aperiodic
- For $y \neq x$, $P_{x,y} = 1/|V|$ or 0.
- Uniform stationary distribution
Irreducible

Lemma

Let G be a graph on n vertices with maximum degree $\leq \Delta$. For $k \leq n/(3\Delta + 3)$, the chain is irreducible.

Proof.

Let $N(I)$ be the set of neighbors of nodes in I.

Let I_1 and I_2 be two independent sets of size k. The two independent sets and the neighbors of their nodes cover no more than $2k(\Delta + 1)$ nodes. Thus, there is a third independent set J, such that

$$(J \cup N(J)) \cap (I_1 \cup I_2 \cup N(I_1) \cup N(I_2)) = \emptyset.$$

The chain can move from I_1 to I_2 by first moving to J and then to I_2.

Convergence Time

Theorem

Let G be a graph on n vertices with maximum degree $\leq \Delta$. For $k \leq n/(3\Delta + 3)$,

$$\tau(\epsilon) \leq kn \ln \epsilon^{-1}.$$

Coupling:

1. X_0 and Y_0 are arbitrary independent sets of size k in G.
2. To compute X_{i+1} and Y_{t+1}:
 1. Choose uniformly at random $v \in X_t$ and $w \in V$.
 2. if $w \notin X_i$, and $(X_t - \{v\}) \cup \{w\}$ is an independent set, then $X_{t+1} = (X_t - \{v\}) \cup \{w\}$, otherwise, $X_{i+1} = X_i$.
 3. If $v \notin Y_t$ choose v' uniformly at random from $Y_t - X_t$, else $v' = v$.
 4. if $w \notin Y_i$, and $(Y_t - \{v'\}) \cup \{w\}$ is an independent set, then $Y_{t+1} = (Y_t - \{v'\}) \cup \{w\}$, otherwise, $Y_{t+1} = Y_t$.

Let $d_t = |X_t - Y_t|$,

- $|d_{t+1} - d_t| \leq 1$.
- $d_{t+1} = d_t + 1$ iff $v \in Y_t$ and there is move in only one chain. Either w or its neighbor must be in $(X_t - Y_t) \cup (Y_t - X_t)$

$$
\Pr(d_{t+1} = d_t + 1) \leq \frac{k - d_t}{k} \frac{2d_t(\Delta + 1)}{n}.
$$

- $d_{t+1} = d_t - 1$ if $v \not\in Y_t$ and w and its neighbors are not in $X_t \cup Y_t - \{v, v'\}$. $|X_t \cup Y_t| = k + d_t$

$$
\Pr(d_{t+1} = d_t - 1) \geq \frac{d_t}{k} \frac{n - (k + d_t - 2)(\Delta + 1)}{n}.
$$
We have for $d_t > 0$,

$$\mathbb{E}[d_{t+1} \mid d_t] = d_t + \Pr(d_{t+1} = d_t + 1) - \Pr(d_{t+1} = d_t - 1)$$

$$\leq d_t + \frac{k - d_t}{k} \cdot \frac{2d_t(\Delta + 1)}{n} - \frac{d_t}{k} \cdot \frac{n - (k + d_t - 2)(\Delta + 1)}{n}$$

$$= d_t \left(1 - \frac{n - (3k - d_t - 2)(\Delta + 1)}{kn}\right)$$

$$\leq d_t \left(1 - \frac{n - (3k - 3)(\Delta + 1)}{kn}\right).$$

Once $d_t = 0$, the two chains follow the same path, thus

$$\mathbb{E}[d_{t+1} \mid d_t = 0] = 0.$$
\[E[d_{t+1}] = E[E[d_{t+1} \mid d_t]] \leq E[d_t] \left(1 - \frac{(n - 3k + 3)(\Delta + 1)}{kn}\right). \]

Since \(d_0 \leq k \), and \(d_t \) is a non-negative integer,

\[\Pr(d_t \geq 1) \leq E[d_t] \leq k \left(1 - \frac{n - (3k - 3)(\Delta + 1)}{kn}\right)^t \leq e^{-t \frac{n - (3k - 3)(\Delta + 1)}{kn}}. \]

For \(k \leq n/(3\Delta + 3) \),

\[\tau(\epsilon) \leq \frac{kn \ln \epsilon^{-1}}{n - (3k - 3)(\Delta + 1)}. \]

In particular, when \(k \) and \(\Delta \) are constants, \(\tau(\epsilon) = O(\ln \epsilon^{-1}) \).
A proper vertex coloring of a graph gives each vertex v a color from a set $C = \{1, 2, \ldots, c\}$ such that the two endpoints of every edge are colored by two different colors.

Any graph with maximum degree Δ can be colored properly with $c = \Delta + 1$ colors.

We are interested in sampling almost uniformly at random a proper coloring of a graph with a fixed $c \geq \Delta + 1$ colors.
MCMC for Sampling Proper Coloring

Markov chain whose states are proper coloring of a graph $G = (V, E)$ with colors in C:

1. X_0 is an arbitrary proper coloring of G.
2. To compute X_{i+1}:
 1. Choose uniformly at random $v \in V$ and $b \in C$.
 2. if coloring v with b gives a proper coloring then change the color of v to b to obtain X_{t+1}
 3. otherwise, $X_{i+1} = X_i$.

- The chain is irreducible if $c \geq 2\Delta + 1$
- The chain is aperiodic
- Uniform stationary distribution
Theorem

For any graph with \(n \) vertices and maximum degree \(\Delta \), the mixing time of the graph-coloring Markov chain is

\[
\tau(\epsilon) \leq \left\lceil \frac{nc}{c - 4\Delta} \ln(n/\epsilon) \right\rceil,
\]

as long as \(c \geq 4\Delta + 1 \).

Simple coupling: use the same choice of \(v \) and \(c \) in both chains.
Proof

- $D_t =$ the set of vertices that have different colors in the two chains at time t,
- $d_t = |D_t|$ can change by at most ± 1 in each iteration.
- The probability that $v \in D_t$ and b is not used by the Δ neighbors of v in both chains is

$$\Pr(d_{t+1} = d_t - 1 \mid d_t > 0) \geq \frac{d_t c - 2\Delta}{n}.$$

- The probability that $v \in V - D_t$ and it is recolored in only one chain is bounded by the probability that v has a neighbor $w \in D_t$, and we choose one of the colors used by w in the two chains.

$$\Pr(d_{t+1} = d_t + 1) \leq \frac{d_t \Delta 2}{n}.$$
\[
E[d_{t+1} | d_t] = d_t + \Pr(d_{t+1} = d_t + 1) - \Pr(d_{t+1} = d_t - 1)
\leq d_t + \frac{d_t \cdot 2\Delta}{n \cdot c} - \frac{d_t \cdot c - 2\Delta}{n \cdot c}
\leq d_t \left(1 - \frac{c - 4\Delta}{nc}\right),
\]

which also holds if \(d_t = 0\).
Using the conditional expectation equality, we have

\[
E[d_{t+1}] = E[E[d_{t+1} | d_t]] \leq E[d_t] \left(1 - \frac{c - 4\Delta}{nc}\right).
\]
By induction, we find

$$E[d_t] \leq d_0 \left(1 - \frac{c - 4\Delta}{nc}\right)^t.$$

Since $d_0 \leq n$, and d_t is a non-negative integer,

$$Pr(d_t \geq 1) \leq E[d_t] \leq n \left(1 - \frac{c - 4\Delta}{nc}\right)^t \leq ne^{-t(c-4\Delta)/nc}.$$

Hence the variation distance is at most ϵ after

$$t = \left\lceil \frac{nc}{c - 4\Delta} \ln(n/\epsilon) \right\rceil$$

steps.
Theorem

Given an n vertex graph with maximum degree Δ, the mixing time of the graph-coloring Markov chain is

$$\tau(\epsilon) \leq \left\lceil \frac{n(c - \Delta)}{c - 2\Delta} \ln(n/\epsilon) \right\rceil,$$

as long as $c \geq 2\Delta + 1$.

Better Coupling

- D_t - vertices with different colors in the two chains.
- $A_t = V - D_t$ - vertices with the same colors in both chains.
- For $v \in A_t$ let $d'(v)$ be the number of neighbors of v in D_t.
- For $v \in D_t$ let $d'(v)$ be the number of neighbors of v in A_t.
- $\sum_{v \in D_t} d'(v) = \sum_{v \in A_t} d'(v) = m'$

$$Pr(d_{t+1} = d_t - 1 \mid d_t > 0) \geq \frac{1}{n} \sum_{v \in D_t} \frac{c - 2\Delta + d'(v)}{c}$$

$$= \frac{1}{cn} \left((c - 2\Delta)d_t + m'\right).$$
• We want to decrease the probability that a vertex \(v \in A_t \) is re-colored in just one chain.

• When \(v \in A_t \) let \(S_1(v) \) be the set of colors of neighbors of \(v \) in the first chain and not in the second chain, \(S_2(v) \) in the second chain and not the first.

• When choosing the color in the second chain couple \(S_1(v) \) and \(S_2(v) \) as much as possible, so when the first chain uses \(c \in S_1(v) \) the second chain uses \(c' \in S_2(v) \).

• The number of coloring that increase \(d_t \) is bounded by \(\max(|S_1(v)|, |S_2(v)|) \leq d'(v) \).

\[
Pr(d_{t+1} = d_t + 1 \mid d_t > 0) \leq \frac{1}{n} \sum_{v \in A_t} \frac{d'(v)}{c} = \frac{m'}{cn}
\]
\[E[d_{t+1} \mid d_t] \leq dt + \frac{m'}{cn} - \frac{1}{cn} ((c - 2\Delta)d_t + m') \]
\[= dt \left(1 - \frac{c - 2\Delta}{nc} \right). \]

\[\Pr(d_t \geq 1) \leq E[d_t] \leq n \left(1 - \frac{c - 2\Delta}{nc} \right)^t \leq ne^{-t(c-2\Delta)/nc}, \]

and the variation distance is at most \(\epsilon \) after

\[\tau(\epsilon) = \left\lceil \frac{nc}{c - 2\Delta} \ln(n/\epsilon) \right\rceil \]

steps.