Problem 1

We know that \(E(|Z_i|) < \infty \) because \(Z_0, \ldots, Z_n \) is a martingale with respect to \(X_0, \ldots, X_n \). So, we need only show that

\[
E(Z_{n+1} \mid Z_0, \ldots, Z_n) = Z_n.
\]

Indeed,

\[
E(Z_{n+1} \mid Z_0, \ldots, Z_n) = E(E(Z_{n+1} \mid X_0, \ldots, X_n, Z_0, \ldots, Z_n) \mid Z_0, \ldots, Z_n)
\]

(1)

\[
= E(E(Z_{n+1} \mid X_0, \ldots, X_n) \mid Z_0, \ldots, Z_n)
\]

(2)

\[
= E(Z_n \mid Z_0, \ldots, Z_n)
\]

(3)

\[
= Z_n,
\]

(4)

where (1) holds because \(E(V \mid W) = E(E(V \mid U,W) \mid W) \); (2) holds because \(Z_0, \ldots, Z_n \) is a function of \(X_0, \ldots, X_n \); and (3) holds because \(Z_0, \ldots Z_n \) is a martingale with respect to \(X_0, \ldots, X_n \).

Problem 2

We will use the following facts:

1. For \(i \neq j \), \(E(X_i X_j) = 0 \). This is because \(X_i \) and \(X_j \) are independent, so \(E(X_i X_j) = E(X_i)E(X_j) = (0)(0) = 0 \).

2. \(\sigma^2 = E(X_i^2) \). This is because \(V(X_i) = E(X_i^2) - E(X_i)^2 = E(X_i^2) - 0 \).

We will show that \(E(|Z_n|) \) is finite. Define \(Y_n = (\sum_{i=1}^n X_i)^2 \). We start by showing that \(E(Y_n) \) is finite. By linearity of expectation, \(E(Y_n) = \sum_{i=1}^n E(X_i^2) + 2 \sum_{i \neq j} E(X_i X_j) \). But the first fact shows that the first sum is finite, and the second fact shows that the second sum is 0. Therefore, \(E(Y_n) \) is finite. Now, we show that \(E(|Z_n|) = E(|Y_n - n\sigma^2|) \) is finite. By the triangle inequality, \(|Y_n - n\sigma^2| \leq |Y_n| + |n\sigma^2| \). So, \(E(|Y_n - n\sigma^2|) \leq E(|Y_n|) + E(|n\sigma^2|) \). We just showed that the first term is finite (note that \(Y_n = |Y_n| \)), and the second term is also finite. Therefore, \(E(|Z_n|) \) is finite.

Now, we show that \(E(Z_{n+1} \mid X_1, \ldots, X_n) = Z_n \). We have

\[
Z_{n+1} = \left(\sum_{i=1}^{n+1} X_i \right)^2 - (n+1)\sigma^2
\]

\[
= \left(\sum_{i=1}^{n} X_i \right)^2 - n\sigma^2 + 2 \left(\sum_{i=1}^{n} X_i X_{n+1} \right) + X_{n+1}^2 - \sigma^2
\]

\[
= Z_n + 2 \left(\sum_{i=1}^{n} X_i X_{n+1} \right) + X_{n+1}^2 - \sigma^2.
\]
So, by using linearity of expectation and the fact that \(X_{n+1} \) is independent of \(X_1, \ldots, X_n \),

\[
E(Z_{n+1} \mid X_1, \ldots, X_n) = E\left(Z_n + 2 \left(\sum_{i=1}^{n} X_i X_{n+1} \right) + X_{n+1}^2 - \sigma^2 \mid X_1, \ldots, X_n \right) \\
= Z_n + 2 \left(\sum_{i=1}^{n} X_i E(X_{n+1}) \right) + E(X_{n+1}^2) - \sigma^2 \\
= Z_n + E(X_{n+1}^2) - \sigma^2 \quad \text{(because } E(X_{n+1}) = 0) \\
= Z_n. \quad \text{(by the second fact)}
\]

This shows that \(Z_1, Z_2, \ldots \) is a martingale with respect to \(X_1, X_2, \ldots \) (and also a martingale with respect to itself, due to problem 1).

Problem 3

a. This follows from problem 2, because \(V(X_i) = 1 \).

b. We will use the third condition in the martingale stopping theorem. The second part of the condition holds because \(\left(\sum_{i=1}^{n} X_i \right)^2 \) is bounded (between 0 and \(\max(l_1^2, l_2^2) \)), so we need only show that \(E(T) \) is finite. Let \(C = (l_1 + l_2)/2 \). For each \(i, -l_1 < i < l_2 \), let \(p_i \) be the probability that, if the player currently has \(i \) dollars, the game ends within \(C \) steps. By choice of \(C \), all \(p_i \) are nonzero. Let \(p = \min p_i \), so the player always has probability at least \(p \) of ending within the next \(C \) steps. Now, from the beginning of the game, with probability at least \(p \), we end within \(C \) steps. If we haven’t finished yet, with probability at least \(p \), we end within a further \(C \) steps, and so on. Therefore, the expected number of “sequences of \(C \) steps” until the game ends is at most the expectation of a geometric random variable with probability \(p \), which is finite. (A “sequence of \(C \) steps” means steps 1 through \(C \), steps \(C + 1 \) through \(2C \), and so on.) Therefore, \(E(T) \) is finite, and the martingale stopping theorem tells us that \(E(Z_T) = 0 \).

c. We have

\[
Z_T = \left(\sum_{i=1}^{T} X_i \right)^2 - T,
\]

and using part b and linearity of expectation,

\[
0 = E(Z_T) = E(\left(\sum_{i=1}^{T} X_i \right)^2) - E(T).
\]
Using the result that the probability of winning is $l_1/(l_1 + l_2)$,

$$E(T) = E((\sum_{i=1}^T X_i)^2)$$

$$= \frac{l_1}{l_1 + l_2} l_2^2 + \frac{l_2}{l_1 + l_2} (-l_1)^2$$

$$= \frac{l_1l_2(l_1 + l_2)}{l_1 + l_2}$$

$$= l_1l_2.$$