Today’s Agenda

- Digital Signatures Review
- RSA Signatures
- Random Oracle Methodology

1 Digital Signature Review

Definition 1. A digital signature scheme for a message space \(M \) consists of PPT algorithms \((\text{KeyGen}, \text{Sign}, \text{Verify})\) such that:

1. **Correctness:** \(\forall (vk, sk) \in \text{KeyGen}(1^k), \forall m \in M \) and for all \(\sigma \in \text{Sign}(sk, m) \),
 \[\text{Verify}(vk, m, \sigma) = \text{Accept} \]

2. **Security:** For all PPT \(A \exists \negl. \nu() \) such that
 \[\Pr[(vk, sk) \in \text{KeyGen}(1^k) ; (Q, m', \sigma') \leftarrow A^{\text{Sign}(sk, \cdot)}(vk) : m' \notin Q \text{ and } \text{Verify}(vk, m', \sigma') = \text{Accept}] = \nu(k) \]

 Our adversary \(A \) has access to the signing oracle \(\text{Sign}(sk, \cdot) \) and can get signatures \(\sigma_1, \sigma_2, \ldots, \sigma_n \) on his choice of messages \(m_1, \ldots, m_n \). This list of message-signature pairs is outputted as \(Q \). This cannot be tampered with and is fixed by \(A \)’s queries.

Let us see the original RSA signature:

1. **KeyGen(1\(^k\)):** Let \(N = p.q \), product of two \(k \)-bit primes. Output \(vk = (N, e) \) and \(sk = d \) for message space \(M = \mathbb{Z}_N^* \)
2. **Sign(sk, m):** \(m^d \mod N \)
3. **Verify(vk, m, \sigma):** Check if \(\sigma^e = m \mod N \)

2 RSA Signature

The above mentioned signature scheme restricts the size of message and also has various attacks. So what is actually used in practice is a modified version of the original signature called the RSA Full-domain Hash Signature:

1. **KeyGen(1\(^k\)):** Let \(N = p.q \), product of two \(k \)-bit primes. Output \(vk = (N, e) \) and \(sk = d \) for message space \(M = \{0, 1\}^* \)
2. **Sign(sk, m):** \((H(m))^d \mod N \) where \(H : \{0, 1\}^* \rightarrow \mathbb{Z}_N^* \) is a “magic” hash function.
3. **Verify(vk, m, \sigma):** Check if \(\sigma^e = H(m) \mod N \)
But this scheme is provably NOT provably secure meaning that you can design a very contrived hash function [Canetti-Goldreich-Halevi’98] which contradicts the security notion of signatures as we have defined it. What we do know is the following:

1. For all algorithmic instantiations of H, there exists some contrived TDP f such that full-domain hash signature using f is broken.

2. There exists a contrived CRHF H such that full-domain hash signature using f is broken for H.

But it is provably secure in what is called the Random Oracle Model [Bellare-Rogaway’96].

3 Random Oracle Model

This model states that each party has oracle access to a truly random function $R()$. For the purposes of a specific protocol, this random oracle can be instantiated with a specific function, say $H()$. Security in the Random Oracle model means that for all PPT A that do not have the description for H but only oracle access to it, there exists a negligible $\gamma()$ such that when $H : \{0,1\}^* \mapsto \mathbb{Z}_N^*$ is a random function. It seems like the ROM is sort of adhoc and may not really be a formal way of proving security, but it is still a reasonable way of proving.

For example, let H be a program such that without its description it is truly indistinguishable from a truly random function. Let A be a program attacking Full-domain hash (FDH)-RSA that tries to attack the signature without knowing how H works algorithmically and using H as a black-box. Every time A needs to evaluate H it makes explicit subroutine calls to H and still works if the subroutine is replaced by truly random function. Then A has only negligible probability of breaking FDH-RSA (if RSA assumption holds). Another reason why proof in the ROM is acceptable is that most of the cryptanalysis and attacks on RSA-signatures do not care about structure of H and in fact treats it as a black-box.

Let us prove the security of RSA-signatures in the ROM model: Or reduction B (trying to break TDP f_{pk}) will work as follows:

On input f_{pk}, y:

1. Set $vk = f_{pk}$ as input to A

2. To answer queries to H: On input s_i, return random $t_i \leftarrow \text{Domain of } f_{pk}$ which is \mathbb{Z}_N. Also remember the pairs (s_i, t_i) in case A asks the same query again.

3. To answer signature queries: On input m_i:

 (a) Pick random $\sigma_i \leftarrow \text{Domain of } f_{pk}$

 (b) Set $H(m_i) = f_{pk}(\sigma_i)$

 (c) Output σ_i

The problem with this is that A can easily get B stuck by asking $H(m)$ and then signature on m. Since B is choosing a random element in the domain as the signature this wouldn’t necessarily match the hash value. So we make the following modifications:

On input f_{pk}, y: choose a random $r \leftarrow \{1, \ldots, q\}$ is the number of queries A makes to H. So B chooses a position in A’s queries to put y for A to invert it for him.

1. Set $vk = f_{pk}$ as input to A
2. To answer queries to H: On input s_i, pick random $t_i \leftarrow \text{Domain of } f_{pk}$ which is \mathbb{Z}_N^*. Also remember the pairs (s_i, t_i) in case A asks the same query again. Output $f_{pk}(t_i)$. For query number r, return y.

3. To answer signature queries: On input m_i:
 (a) Pick random $\sigma_i \leftarrow \text{Domain of } f_{pk}$ or if $H(m_i)$ has been queried in the past then $\sigma_i = t_j$
 (b) Set $H(m_i) = f_{pk}(\sigma_i)$
 (c) Output σ_i

4. When A outputs a forgery (m, σ): $f_{pk}(\sigma) = H(m) = y$. If $m \neq s_r$, fail else output σ.

Note that whatever forgery A outputs, it has to query the H-oracle on that message. This modified working of the reduction B proves security if the signature scheme in the random-oracle model.