Last Lecture

- NIZK wrap-up
- Course wrap-up
- Evaluations

BDMP construction for 3-SAT: input \(\Phi \) (3cnf)

CRS: \(6 \leftarrow \{0,3\}^{\text{long enough}}, 6 = 6_1 \cdot 6_2 \)

Prover: pick \(m \) RSA \(n, y \in QR_n \), use \(6 \) to compute \(\Pi_x \) that \((n, y) \) is correct

\(\Phi \): \(n \) vars, \(M \) clauses: encode sat. assignment \(\omega \): \(\omega_i \leftarrow QR_n \) if \(\omega_i = 0 \)

\(\omega_i \leftarrow QR_n \) if \(\omega_i = 1 \)

\((X_1 \lor \overline{X}_2 \lor X_5)\)

encoding of literals: \((\omega_1, \omega_2, \omega_3, \omega_4)\)

\(X_1 \sim \omega_1 \)
\(\overline{X}_2 \sim \omega_2 \cdot y \)
\(X_3 \sim \omega_3 \)

For every clause must prove that not every literal is encoded using a QR.

Parse \(6_2 = 6_1 0 6_1 0 \ldots 0 6_1 \)

Use \(6_i \) for \(i^{th} \) clause as follows
- interpret it as a list of elements from \(Z_n^2 \)
- delete all \(\omega_i \)'s not in \(QR_n \) \cup \(QR_n \)
- organize in triples: \((t_1, t_2, t_3), (t_4, t_5, t_6), \ldots\)
- for triples of type \((0,0,0)\) reveal square roots
- for triples of the same type on clause \(i \), multiply with
- clause \(i \) and reveal square roots.

Output: \((n, y), \Pi_x, \omega_1, \ldots, \omega_\mu\) square roots for triples that are discarded/matched

\(\Rightarrow \) We need to make it \(\Sigma K \) for more than one statements

Multi-theorem NIZK (FLS): for a randomly chosen \(6, \forall x, w_1, w_2 \)
- Witness-indistinguishability \((6, \text{Prover} (6, x, w_1)) \approx (6, \text{Prover} (6, x, w_2))\)

NIZK is also NIWI:
\((6, \text{Prover} (6, x, w_3)) \approx \text{Simulator} \approx (6, \text{Prover} (6, x, w_3))\)
Trick

\[G = G_{R \circ \sigma} \land \exists \mathbf{k} \text{ security parameter} \]

\[2^{\mathbf{k}} \text{ log enough} \]

- that \((x, G_{R}) \in L'\) using witness \(w\)

Prover:

Use [BDMP] to prove the following statement:

\[\exists \mathbf{g} \]

\[x \in L \text{ (using witness } w), \text{ or } \exists \mathbf{k} \text{ a } k\text{-bit } s \text{ s.t. } G_{R} = G(s) \]

\[L' = \{ (x, G_{R}) : \exists w \text{ s.t. either } w \text{ is witness that } x \in L \text{ or } G(w) = G_{R} \} \]

Verifier:

Just verifies the proof.

Simulator:

Use [BDMP] to prove \((x, G_{R}) \in L'\) using witness \(s\), s.t. \(G_{R} = G(s)\)

Security

- Real Prover
- Hybrid 0:
 \[G = G_{L \circ R} \land w \text{ using } w \]

- Hybrid 1:
 \[G = G_{L \circ R} \land w \text{ using } w \]

- Simulator
- Hybrid 2:
 \[G = G_{L \circ R} \land w \text{ uses } S \]

Reference:

Simulatable \(\text{VRFs} - \text{crypto 018}\)

Course Wrap-Up

- Crypto toolkit: OWFs, OWFs, TDB, CRHFs
- Examples under specific number-theoretic assumptions
- Complexity theory - comp. number theory
- Algorithms

- Application:
 - Encryption, Authentication, Pseudorandomness
 - Secure communication
 - Secure computation: 2 PC, ZK proofs, NIZK

- Advanced cryptography / crypto reading group
- Policy - dialogue
- Applied cryptography
- Implementation

Methodology:

- Rigorous def.
- State assumptions
- Give proofs