Lecture 22

2K Pok of DL and friends

\[\begin{align*}
\text{Prover} & \quad \text{Verifier} \\
\alpha & \quad y = g^x \\
2K \text{ pok of } & \\
\alpha & \\
\end{align*} \]

Group \(G \) of order \(q \), prime, \(\langle g \rangle = G \)

\[\text{Protocol} \]

\[\begin{align*}
\text{Prover} & \quad \text{Verifier} \\
\gamma \leftarrow Z_q & \quad R \rightarrow c \leftarrow Z_q \\
R = g^\gamma & \\
\end{align*} \]

\[s = r + c \alpha \]

\[s \rightarrow g^s = R \cdot y^c \quad \text{with prob } \varepsilon = 1/\text{poly} \]

Verifier accepts.

Assume that we have access to a malicious prover \(\star \).
With access to prover \(\star \) we get 2 accepting conversations for the same \(R \):

\[(R, c, s) \quad \text{and} \quad (R, c', s') \]

such that:

\[\begin{align*}
g^s & = R \cdot y^c \\
g^s' & = R \cdot y^{c'} \end{align*} \]

\[\text{divide them:} \quad g^{s-s'} = y^{c-c'} \quad \Rightarrow \quad y = g^{s-s'}/c-c' \]

Say we have a malicious verifier \(\star \), who computes:

\[c = \text{MysteriousFunction}(R) \]

Simulator: choose \(R' \), send to verifier \(\star \) and find out \(c \).

Now, choose random \(s \leftarrow Z_q \) and solve for \(R = g^s / y^c \)

Send \(R \) to \(\star \), receive \(c \), respond with \(s \).

This can work if verifier is honest and \(c \in Z_q \) but if he is malicious then he may not give you a different \(c \) for the same \(R \).

\[\text{In order for this to work we need the verifier to commit to "c" in advance.} \]

\[\begin{align*}
\text{Prover} & \quad \text{Verifier} \\
\alpha & \quad y = g^x \\
h \leftarrow Z_q, h = g^\theta & \quad c \leftarrow Z_q \\
R \leftarrow & \\
(\text{commit} \circ \text{PedCommit}(c, \text{rand})) & \\
\text{rand} \leftarrow Z_q, \text{commit} = \text{Ped Commit}(c, \text{rand}) & \\
c, \text{rand} & \\
\end{align*} \]

\[\text{Pederssen commitment} \]

\(PK = (g, h) \in G^2 \) of order \(q \)

\[\text{Commit}(m, \text{rand}) = g^m \cdot h^{\text{rand}} \]

\[\text{l} \leftarrow Z_q \]

- Unconditionally hiding: \(\text{Commit}(m, \text{rand}) = G \)
- Computationally binding: \(\text{if} \quad g^m \cdot \text{rand} = g^m' \cdot \text{rand}' \quad \Rightarrow \quad g^l = h^{m-m'} \)
ZK Simulator:
• choose b at random, send $h = g^b$ to V^*
• receive commit from V^*, choose $R' \in C$, send to V^*
• receive c' and rand' from V^*, pick $s \in \mathbb{Z}_q$, let $R = g^s / y^c$, reset V^* sending it R; receive (c', rand) again. (If not try again with different random s). If $(c, \text{rand}) \neq (c', \text{rand'})$, fail.
Else, send s, h.

Knowledge extractor:
• Run the prover until accepting a conversation.
 Get $h = g^b$, b
 $s, R, s + g^s = R \cdot y^c$
 commit = $g^c \cdot \text{rand} \cdot c, \text{rand}$
• Pick random c', solve for rand' $s+$
 $c + b \cdot \text{rand} = c' + b \cdot \text{rand'}$ (so, commit = $g^c \cdot \text{rand'})$
• Reset P^* to 4th round, and send $(c', \text{rand'})$ instead.
• Receive s', b s t $g^s = R \cdot y^{c'}$
 $g^{s-s'/c-c'} = y$

Say that on the OT protocol, we have a Simulator in the place of the recipient.

Simulator $m_0 \xrightarrow{m_0} \text{TTP} \xrightarrow{b} \text{Recipient}$
\rightarrowConstructing the second ZKPoK for OT.

Prover
$\begin{array}{c}
V_0, y, a, b \\
\text{or} \\
V_0 = g^x
\end{array}$

Verifier
$\begin{array}{c}
V_0, y
\end{array}$

ZK PoK of $\alpha, b \in \mathbb{Z}^*_3$
\textbf{Prover}

\[r \in \mathbb{Z}_q, \quad s_b \in \mathbb{Z}_q, \quad c_b \in \mathbb{Z}_q \]

\[R_b = g^r \]

\[R_b, R_0 \rightarrow \]

\[c \]

\[C_b = c - c_b \]

\[s_b = r + \alpha c_b \]

\[c_0, c_1, s_0, s_1 \rightarrow \]

\[c_0 + c_1 = c \]

\[R_0 = g^{s_0} c_0 \]

\[R_1 = g^s c_1 \]

\[R_i = g^y i \]

\textbf{Verifier}

\[R_0, R_1 \rightarrow \]

\[c \]

Correctness is easy by inspection!