Problem 1: Fun with Hash Functions

a. We wish to construct an H_a that is collision-resistant such that H'_a (which drops the LSB of H_a) is not.

First, we fix two distinct strings x_1, x_2. Define $h_1 h_2 \ldots h_k := H(x_1)$, where h_i is the ith bit of $H(x_1)$. We will define our first attempt of a hash function

$$H'_a(x) = \begin{cases} h_1 \circ_h 2 \circ \cdots \circ h_{k-1} \circ \overline{h_k}, & \text{if } x = x_2 \\ H(x) & \text{otherwise.} \end{cases}$$

In other words, H'_a outputs $H(x_1)$ with its last bit flipped on input x_2; otherwise, it simply outputs $H(x)$.

We can see that this is a step in the right direction: H'_a seems intuitively collision-resistant, since we are only changing the output at one point, and it is true that if we drop the LSB then we can find a collision at x_1, x_2. But we find that there is a problem – while it isn’t obvious how to find a collision for H'_a, it is difficult to prove that we cannot. If our adversary returns a collision (m_1, x_2) for H'_a, then we do not know how to find a collision for H; since $H'_a(x_2)$ is hardcoded and does not tell us anything about a particular input to H. This can break our entire reduction: the adversary knows x_2, so it is perfectly allowed to focus exclusively on finding a collision there, and thus H'_a may not be collision-resistant even if H is.

So let us try again. Define

$$H_a(x) = \begin{cases} h_1 \circ_h 2 \circ \cdots \circ h_{k-1} \circ \overline{h_k}, & \text{if } x = x_2 \\ H(x) & \text{if } H(x) \neq H_a(x_2) \\ H(x_2) & \text{if } H(x) = H_a(x_2) \end{cases}$$

In other words, H_a outputs $H(x_1)$ with its last bit flipped on input x_2. Otherwise, on input x, H_a calculates $H(x)$ and checks if it is equal to $H_a(x_2)$: if it is, it outputs $H(x_2)$, otherwise it outputs $H(x)$.

Assume for the sake of contradiction that H_a is not collision-resistant, i.e. there exists an adversary A which can find a collision with non-negligible probability. Let us define an adversary B which finds a collision for H with non-negligible probability.

Note first that, by construction, H_a outputs $H_a(x_2)$ at exactly one input, so there does not exist a collision for H_a where one of the inputs is x_2. Let B run A, finding $a \neq b$ such that $H_a(a) = H_a(b)$. There are then three cases:

Case 1 $H_a(a) = H_a(b) = H(x_2)$ and $H(a) = H(b) = H_a(x_2)$. B outputs (a, b).

Case 2 $H_a(a) = H_a(b) = H(x_2)$ and WLOG $H(a) \neq H_a(x_2)$. Then by construction, $H_a(a) = H(a)$, so B outputs (a, x_2).

Case 3 $H_a(a) \neq H(x_2)$ and $H_a(b) \neq H(x_2)$. Then we know that $H_a(a) = H(a)$ and $H_a(b) = b$, so B outputs (a, b).
b. Assume for the sake of contradiction that one of H_1, H_2 is collision-resistant (WLOG, H_1), but $H_b = (H_1(m), H_2(m))$ is not collision resistant. Since H_b is not collision-resistant, there exists an adversary A that can find a collision with non-negligible probability. Let us define an adversary B that finds a collision in H_1 with that same probability.

B runs A, getting a collision $m_1 \neq m_2$ such that $H_b(m_1) = (x, y) = H_b(m_2)$. By definition of H_b,

$$x = H_1(m_1) = H_2(m_2)$$

$$y = H_2(m_1) = H_2(m_2),$$

so B outputs (m_1, m_2) as well, and is correct just as often as A. Thus, H_b is collision resistant when either of H_1, H_2 is.

c. Let H_1 be a CRHF but H_2 be the constant function $H_2(x) = 0^k$. Then H_c is not collision resistant, as it is the constant function $H_c(x) = H_1(0^k)$. If we switch the definitions of H_1, H_2, we get that $H_c(x) = 0^k$. So even if one of H_1, H_2 is a CRHF, there exist choices for the other function that make H_c not a CRHF.

d. Proof. Assume for the sake of contradiction that F_d is not a PRF. In other words, there exists an adversary A which can distinguish between F_d and a random function with non-negligible probability $\epsilon(k)$. Let us define an adversary B which can distinguish between F and a random R with non-negligible probability.

Our adversary B is given access to oracle O_B, which is either $F(k, \cdot)$ or a truly random function R. $B(1^k)$ runs $A(1^k)$. If A queries x_i, then B responds with $O_B(H(x_i))$. B then outputs whatever A outputs.

If O_B was F, then B will act just like F_d on A’s oracle queries, so B will be correct with the same probability as A. We now need to show that, if O_B is $R : \{0, 1\}^k \mapsto \{0, 1\}^k$, then A will act as if it was given oracle access to a random function $\{0, 1\}^* \mapsto \{0, 1\}^k$. Since H is collision-resistant, we know that A will only select $x_i \neq x_j$ such that $H(x_i) = H(x_j)$ with negligible probability. Since R is random, A gains no information about $H(x_i)$ from $R(H(x_i))$, so A only has an additional advantage when it does happen to find a collision for H.

Thus, B is correct with probability $\epsilon(k) - \nu(k)$ for negligible probability ν, and thus F is not a PRF. But this contradicts our definition of F, so F_d must be a PRF.

Problem 2: Broken Signatures

a. We want to show that if factoring is hard, it is also hard to make the scheme target-message forgeable using a public-key only attack. We are, of course, going to prove this using the contrapositive: if there exists an adversary A who can forge a signature for a target message with a PK-only attack, we can construct a B that factors n with non-negligible probability. Assume that we have some A such that

$$\Pr [PK \leftarrow Gen(1^k); m \leftarrow QR_n \cup QNR_n; b \leftarrow A(PK, m) : \text{Verify}(m, b) = \text{True}] = \epsilon(k)$$

for some non-negligible $\epsilon(\cdot)$. Our algorithm B picks some random r in \mathbb{Z}_n^* and computes $x \equiv r^2 \pmod{n}$. With probability 1/2, it sets $x := -x$ (so that it sometimes gives A inputs from QNR_n). B then gives x to A (along with the PK, which in this case is just n), and takes the b that A returns. If $b^2 \equiv \pm x \pmod{n}$ but $b \neq \pm r \pmod{n}$, we have seen that B can factor n (see next paragraph for a reminder how). Otherwise, B outputs “fail.”
If we have \(b^2 \equiv r^2 \pmod{n} \), we know that \(b^2 - r^2 = kn \) for \(k \in \mathbb{Z} \). Then \((b - r)(b + r) = kn\), which is the same as saying that \(n \mid (b - r)(b + r) \). Because \(b \neq r \pmod{n} \) we know that \(n \nmid b - r \), and because \(b \neq -r \pmod{n} \), we know that \(n \nmid b + r \). Then there must exist some non-trivial divisor of \(n \), call it \(p \), such that \(p \mid (b + r) \) and \(p \mid n \). So \(p = \gcd(n, b + r) \), and once we have this value we have \(q \) and \(n \) is completely factored. So our algorithm works to factor \(n \) because it is sufficient to find two square roots with this property.

Since \(\mathcal{A} \) is outputting a random square root of \(\pm x \) and there are four squares roots modulo \(n \), \(\mathcal{B} \) has an \(\epsilon/2 \) probability of getting something useful, which is non-negligible and so we are done.

b. For this attack, our adversary should pick the signature \(\sigma \) first. Then, it can simply compute \(\sigma^2 \pmod{n} \) to get something that is in the message space (in fact, specifically in \(QR_n \)), and has \(\sigma \) as its corresponding signature.

c. Our adversary first picks a random \(x \) in \(\mathbb{Z}_n^* \), then computes \(m = x^2 \) and gives this to the signer.

We get back some square root \(\sigma \) and check to see if \(\sigma \neq \pm x \pmod{n} \). Since there are four square roots of \(m \) modulo \(n \), we have probability \(\frac{1}{2} \) of this condition being met. As we have seen in Part A, once we have two elements \(\sigma \) and \(x \) such that \(\sigma^2 \equiv x^2 \pmod{n} \) but \(\sigma \neq \pm x \pmod{n} \), we can find a non-trivial divisor of \(n \) and therefore factor it completely.

Note that, while in part a., we had

\[
\begin{align*}
g^r_1 g^r_2 &= g^{r_1} g^{r_2} \pmod{q} \\
g^{m - m_i} &= g^{r_i - r} \pmod{q} \\
g^{2(m - m_i)} &= g^{2(r_i - r)} \pmod{q} \\
g^{2(2m - m_i)} &= g^{2(2r_i - 2r)} \pmod{q} \\
2(m - m_i) &\equiv 2\alpha(r_i - r) \pmod{\phi(q)}
\end{align*}
\]

Note that, because \(q \) is a safe prime, \(\phi(q) = q - 1 = 2p \) for some prime \(p \). This means that:

\[
\begin{align*}
2(m - m_i) &\equiv 2\alpha(r_i - r) \pmod{2p} \\
2(m - m_i) &= 2\alpha(r_i - r) + 2kp \\
(m - m_i) &= \alpha(r_i - r) + kp \\
(m - m_i) &\equiv \alpha(r_i - r) \pmod{p}
\end{align*}
\]

This means that we can calculate

\[
\alpha \equiv (m - m_i)(r_i - r)^{-1} \pmod{p},
\]

Problem 3: GHR signature

a. Here, we need to construct an adversary \(\mathcal{B} \) that is given a prime modulus \(q \), \(g \) and \(y \) such that \(g^\alpha \equiv y \pmod{q} \) for some \(\alpha \). \(\mathcal{B} \) must be able to find \(\alpha \) with some non-negligible probability. To give input to \(\mathcal{A} \), \(\mathcal{B} \) needs to be able to set up a public key \(PK \).

To do this, \(\mathcal{B} \) picks random \(k \)-bit primes \(p_1 \) and \(p_2 \) and sets \(n = p_1 p_2 \); then, \(\mathcal{B} \) picks \(s \leftarrow \mathbb{Z}_n^* \) and \(pk \) to be some key for a hash function. Finally, \(\mathcal{B} \) then sets \(g_1 = g^2 \) and \(g_2 = g^{y^2} \) and sends \(\mathcal{A} \) the public key \(PK = (n, s, q, pk, g_1, g_2) \). Since \(\mathcal{B} \) knows the factorization of \(n \), \(\mathcal{B} \) is able to answer \(\mathcal{A} \)'s signing queries just as the real signer would. So they follow the protocol completely normally for messages \(m_1 \) through \(m_\ell \). \(\mathcal{B} \) will also store each of the \(\ell \) queries and \(\ell \) responses \((m_i, (\sigma_i, r_i)) \).

With non-negligible probability \(\epsilon(k) \), \(\mathcal{A} \) will produce a successful forgery \((m^*, (\sigma^*, r^*))\) such that \(g_1^{m^*} g_2^{r^*} = g_1^{m_i} g_2^{r_i} \) for some \(i \). \(\mathcal{B} \) can then search through the stored table of queries and find the \(i \) that satisfies that equation. After finding \(i \), \(\mathcal{B} \) knows that:

\[
\begin{align*}
g_1^{m^*} g_2^{r^*} &\equiv g_1^{m_i} g_2^{r_i} \pmod{q} \\
g_1^{m^* - m_i} &\equiv g_2^{r_i - r^*} \pmod{q} \\
g^{2(m^* - m_i)} &\equiv g^{2(r_i - r^*)} \pmod{q} \\
g^{2(2m^* - m_i)} &\equiv g^{2(2r_i - 2r^*)} \pmod{q} \\
2(m^* - m_i) &\equiv 2\alpha(r_i - r) \pmod{\phi(q)}
\end{align*}
\]

HW 9-3
because \(r_i \neq r^* \) (since, if they were equal mod \(p \), then \(m_i = m^* \)), and so \(r_i - r^* \) has an inverse mod \(p \). Therefore, \(B \) can correctly compute \(\alpha' = \alpha \pmod{p} \). All \(B \) needs to do now is figure out the value of \(\alpha \pmod{2p} \).

We know that either

\[
\alpha \equiv \alpha' \pmod{2p}, \quad \text{or} \quad \alpha \equiv p + \alpha' \pmod{2p}.
\]

We can then test both of these numbers to figure out which one is the discrete log of \(y \) base \(g \), by computing \(g^{\alpha'} \) and \(g^{p+\alpha'} \) and comparing both values to \(y \). We then output the correct value.

This means that \(B \) succeeds with the same probability that \(A \) does, and so (in this case) \(B \) also has non-negligible probability \(\epsilon(k) \).

b. Now, \(B \) gets a value \(pk \) and needs to find \(x \) and \(x' \) such that \(x \neq x' \) and \(h_{pk}(x) = h_{pk}(x') \) for the hash function corresponding to the key\(pk \). Here, our \(B \) picks \(p_1, p_2, q \) as safe primes, and sets \(n = p_1 p_2 \). \(B \) then picks \(g_1 \) and \(g_2 \) as random generators for \(QR_q \), with \(g_1 \neq g_2 \). Finally, \(B \) publishes \(PK = (n, s, q, pk, g_1, g_2) \). Again, since \(B \) knows the factorization of \(n \), it can respond to signature queries normally.

\(B \) will (after answering all signature queries) get back a successful forgery \((m^*, (\sigma^*, r^*))\) such that \(g_1^m g_2^{r^*} \neq g_1^m g_2^{r^*} \), but \(H_{pk}(m^*) = H_{pk}(m_i) \) for some \(i \). We simply set

\[
x = g_1^m g_2^{r^*}, \quad \text{and} \quad x' = g_1^m g_2^{r^*},
\]

and we have found a collision in \(h_{pk} \). Thus, \(B \) succeeds whenever \(A \) succeeds.

c. Say that this signature scheme is existentially forgeable. This means that there exists a PPT adversary \(A \) that can, with non-negligible probability, output a successful forgery \((m^*, (\sigma^*, r^*))\) after querying a signing oracle a polynomial number of times on messages \(m_1, \ldots, m_\ell \), where \(m^* \neq m_i \) for all \(i \).

How can this happen? This can be divided into three cases:

Case 1 The verifier accepts the signature, and for all \(i \in \{1, \ldots, \ell\} \), \(h_{pk}(g_1^{m^*} g_2^{r^*}) \neq h_{pk}(g_1^{m_i} g_2^{r_i}) \).

But as seen in class, this would break the RSA assumption.

Case 2 There exists some \(i \) such that \(h_{pk}(g_1^{m^*} g_2^{r^*}) = h_{pk}(g_1^{m_i} g_2^{r_i}) \), but \(g_1^{m^*} g_2^{r^*} \neq g_1^{m_i} g_2^{r_i} \). Then, as proved in part b, this would break the collision-resistance of \(h \).

Case 3 There exists some \(i \) such that \(g_1^{m^*} g_2^{r^*} = g_1^{m_i} g_2^{r_i} \) (and therefore \(h_{pk}(g_1^{m^*} g_2^{r^*}) = h_{pk}(g_1^{m_i} g_2^{r_i}) \)).

Then because we know that \(m^* \neq m_i \), part a shows that this case would mean that the discrete logarithm assumption would not hold.

If the signature scheme is existentially forgeable, then one of these cases must occur with non-negligible probability, so one of our three assumptions must not hold. Therefore, we have shown that if the discrete log assumption, the strong RSA assumption, and \(h \)'s collision resistance hold, then the signature scheme is not existentially forgeable, which is what we wanted.

Problem 4: Digital Signatures

Let \(KeyGen \) be the key generation algorithm of a digital signature scheme. WLOG, assume that \(KeyGen(1^k) \) uses at most \(k \) random bits. Let \(KeyGen_r \) denote running \(KeyGen \) with randomness \(r \). Note that \(KeyGen_r \) is then a deterministic algorithm.
Define a function \(f \) as follows: On input \(r \) of length \(k \), run \(\text{KeyGen}_r(1^k) \) to obtain \((pk, sk)\), and output \(pk \). We will show that if \(f \) is not one-way, then we can construct an algorithm that takes \(pk \) as input and outputs \(sk \) such that \((pk, sk)\) is in the range of \(\text{KeyGen} \), which contradicts the security of the digital signature scheme.

Proof. If \(f \) is not one-way, then there exists a PPT \(A \) and a non-negligible \(\epsilon \) such that

\[
\Pr[r \leftarrow \{0, 1\}^k; r' \leftarrow A(1^k, f(r)) : f(r') = f(r)] = \epsilon(k).
\]

Define a PPT \(B \) as follows: On input \((1^k, pk)\), run \(A(1^k, pk) \) to obtain \(r' \). Run \(\text{KeyGen}_r(1^k) \) to obtain \((pk', sk')\). Output \(sk' \).

Let us analyze \(B \)'s probability of success. By our problem statement, we have that

\[
\Pr[\text{Success}] = \Pr[(pk, sk) \leftarrow \text{KeyGen}(1^k); sk' \leftarrow B(1^k, pk) : (pk, sk') \in \text{Range}(\text{KeyGen}(1^k))].
\]

Then by our construction of \(B \), we can expand this to

\[
\Pr[(pk, sk) \leftarrow \text{KeyGen}(1^k); r' \leftarrow A(1^k, pk); (pk', sk') \leftarrow \text{KeyGen}_r(1^k) : (pk, sk') \in \text{Range}(\text{KeyGen}(1^k))].
\]

Since \(\text{KeyGen} \) uses each \(k \)-bit string as its randomness with uniform probability, we can choose and fix that randomness without altering the behavior of the algorithm.

\[
\Pr[\text{Success}] = \Pr[r \leftarrow \{0, 1\}^k; (pk, sk) \leftarrow \text{KeyGen}_r(1^k); r' \leftarrow A(1^k, pk); (pk', sk') \leftarrow \text{KeyGen}_r(1^k) : (pk, sk') \in \text{Range}(\text{KeyGen}(1^k))].
\]

But the usage of \(\text{KeyGen}_r \) in this expression is precisely our definition of \(f \)! Thus, we simplify \(B \)'s probability of success to

\[
\Pr[r \leftarrow \{0, 1\}^k; r' \leftarrow A(1^k, f(r)); (pk', sk') \leftarrow \text{KeyGen}_r(1^k) : (pk, sk') \in \text{Range}(\text{KeyGen}(1^k))].
\]

It is difficult to discuss the range of a general algorithm directly, so let us lower bound our probability in order to simplify.

\[
\Pr[\text{Success}] \geq \Pr[r \leftarrow \{0, 1\}^k; r' \leftarrow A(1^k, f(r)); (pk', sk') \leftarrow \text{KeyGen}_r(1^k) : (pk, sk') \in \text{Range}(\text{KeyGen}(1^k)) \land pk = pk'].
\]

Since \(pk = pk' \) entails that \((pk, sk') \in \text{Range}(\text{KeyGen}(1^k))\), we can reduce this to

\[
\Pr[\text{Success}] \geq \Pr[r \leftarrow \{0, 1\}^k; r' \leftarrow A(1^k, f(r)); (pk', sk') \leftarrow \text{KeyGen}_r(1^k) : pk = pk'].
\]

We once again notice that \(f \) is being used here implicitly, and find

\[
\Pr[\text{Success}] \geq \Pr[r \leftarrow \{0, 1\}^k; r' \leftarrow A(1^k, f(r)) : f(r) = f(r')] \geq \epsilon(k).
\]

Thus, \(B \) succeeds with non-negligible probability at recovering a viable secret key from the public key, and the digital signature scheme is not secure. \(\square \)