Problem 1: Fun with PRFs

a. \(F^a_s = F^0_s(x) \circ F_s(x) \) is not a PRF, for any choice of \(F \).

Proof. Consider a distinguisher \(D^a \) given access to an oracle \(O^a \):
(a) Choose some \(x \leftarrow \{0,1\}^k \).
(b) Calculate \(z = F^0_s(x) \).
(c) Query \(y = y_1 \circ y_2 = O^a(x) \).
(d) If \(y_1 = z \), return 1 (pseudorandom); else, return 0 (random).

If run on \(F^a_s \), \(D^a \) will be correct with probability 1, by definition of the function. If run on a random function, \(D^a \) will only incorrectly guess pseudorandom with probability \(\frac{1}{2^k} \). Thus, \(F^a_s \) is never a PRF. \(\square \)

b. \(F^b_s(x) = F^1_s(x_1) \circ F^2_s(x_2) \) is not a PRF, for any choice of \(F \).

Proof. Consider a distinguisher \(D^b \) given access to an oracle \(O^b \):
(a) Choose some \(x_1 \leftarrow \{0,1\}^{\lceil k/2 \rceil} \).
(b) Choose two distinct \(x_2, x'_2 \leftarrow \{0,1\}^{\lceil k/2 \rceil} \).
(c) Query \(y = y_1 \circ y_2 = O^b(x_1 \circ x_2) \).
(d) Query \(y' = y'_1 \circ y'_2 = O^b(x_1 \circ x'_2) \).
(e) If \(y_1 = y'_1 \), return 1 (pseudorandom); else, return 0 (random).

If run on \(F^b_s \), \(D^b \) will be correct with probability 1, by definition of the function. If run on a random function, \(D^b \) will only incorrectly guess pseudorandom with negligible probability. Thus, \(F^b_s \) is never a PRF. \(\square \)

c. \(F^c_s(x) = F^1_s(x) \oplus s_2 \) is a family of PRFs.

Proof. For the sake of contradiction, assume that \(F^c \) were not a PRF, and that we had a PPT adversary \(A \) which could distinguish \(F^c_s(x) \) from random with non-negligible advantage. We could use \(A \) to construct a ppt \(B \) that distinguishes \(F_s \) from random.

\(A \) expects to interact with an oracle \(O_A \) that responds to its queries either in accordance with \(F^c_s \) or in accordance with a truly random function \(R_1 \). \(B \) interacts with an oracle \(O_B \) that responds to its queries either in accordance with \(F^1_s \), or in accordance with a truly random function \(R_2 \).

\(B \) simulates \(O_A \) as follows: First \(B \) picks a random \(s_2 \leftarrow \{0,1\}^k \). Whenever \(A \) makes a query \(x \), \(B \) queries \(O_B \) on \(x \) to get a response \(y \), and then returns \(z = y \oplus s_2 \). When \(A \) returns a response, \(B \) returns the same response.

If \(O_B \) acts in accordance with \(F^1_s \), then \(B \) will be providing \(A \) with an oracle that acts exactly like \(F^c_s(x) \). If \(O_B \) outputs the results of a truly random function, then \(y \oplus s_2 \) is also truly random, because \(s_2 \) is fixed and a truly random value XORed with a fixed value is truly random.
Thus, B's advantage for distinguishing $F_s(x)$ from the output of a random function is the same as A's advantage at distinguishing $F'_{s}(x)$ from random. Meaning, if A has non-negligible advantage, so does B, which is a contradiction. \(\square\)

d. $F^d_s(x) = \begin{cases} F_s(x) & \text{when } x \neq 0^k, \\ a \circ b & \text{when } x = 0^k, \end{cases}$ where we define a to be the first $\lfloor k/2 \rfloor$ bits of s, and b to be the last $\lceil k/2 \rceil$ bits of $F_s(x)$, is not necessarily a family of PRFs.

Proof. Let $G : \{0,1\}^{k/2} \rightarrow \{0,1\}^k$ be a PRG, and let F' be a PRF. Then if we define

$$F_s(x) = F'_{G(s_1)}(x),$$

where s_1 is defined as the first $\lfloor k/2 \rfloor$ bits of s, then F^d would not be a PRF.

First, we sketch why the F defined is a PRF. Suppose it were not, and we had an adversary A which could distinguish $F'_{G(s_1)}$ from a truly random function with non-negligible advantage. If A distinguishes F'_s from a truly random function with non-negligible advantage, then we can use A to show that F' is not a PRF. Otherwise, we would be able to use A to show that G is not a PRG.

But if F^d is instantiated with F, then we can query the oracle on 0^k to obtain s_1. We can then compute $F^d_s(x)$ for any x, so we can distinguish F^d from a truly random function. \(\square\)

e. $F^e_s(x) = F_s(0 \circ x) \circ F_s(1 \circ x)$ is a PRF.

Proof. Assume for the sake of contradiction that F^e_s is not a PRF, and that there exists an adversary A which can distinguish F^e_s from a random function with non-negligible probability. Using A, we can construct an adversary B that distinguishes F_s from a random function with non-negligible advantage.

On input 1^k and with oracle access to O^e, B runs $A(1^k)$. Every time A makes a query x, B makes two queries to O^e getting $y_0 = O^e(0 \circ x)$ and $y_1 = O^e(1 \circ x)$, and returns to A the value $y = y_0 \circ y_1$. When A outputs a decision, B outputs the same decision.

If O^e was F_s, then B is precisely mimicking the behavior of F^e_s for A, so by assumption B will be correct with the same probability as A. If O^e was truly random, then B is also providing A with true randomness, so B will still be correct with the same probability as A. Since A had a non-negligible advantage, B does too, contradicting our assumption that F is a PRF. Thus, F^e_s must be a PRF. \(\square\)

Problem 2: ElGamal Encryption

a. Let $PK = (p, q, g, h)$, $SK = s$, and $m \in QR_p$. Let $c = (c_1, c_2)$ be the encryption $Enc(PK, m) = (g^r, h^r m)$ for some $r \in \mathbb{Z}_q$. Then,

$$Dec(SK, PK, c) \equiv c_2 c_1^{-s} \pmod{p}$$
$$\equiv (h^r m)(g^r)^{-s} \pmod{p}$$
$$\equiv g^{r'} m q^{-rs} \pmod{p}$$
$$\equiv m \pmod{p}$$

HW 7-2
b. Our definition of security is that there exists some algorithm Simulator such that the following two distributions are computationally indistinguishable for all \(m \) in the message space:

\[
D_{\text{Enc}}(1^k, m) = \{(PK, SK) \leftarrow G(1^k); c \leftarrow \text{Enc}(PK, m) : (c, m, PK)\}
\]
\[
D_{\text{Sim}}(1^k, m) = \{(PK, SK) \leftarrow G(1^k); c' \leftarrow \text{Sim}(PK, |m|) : (c', m, PK)\}
\]

Our algorithm FakeCiphertext should first pick some random \(r \in \mathbb{Z}_p^\ast \) and compute \(r^2 = \mu \). This is the same as picking a random \(\mu \) from QR\(_p\), which is what we want for our message space (we should probably also check that \(\mu \) has length \(|m|\)). It also picks random \(z \) and \(\rho \) from \(\mathbb{Z}_q^\ast \) and computes \(\rho^2 \) and \(g^\rho \) (mod \(p \)). Put formally,

\[
D_{\text{Sim}}(1^k, m) = \{(PK, SK) \leftarrow G(1^k); r \leftarrow \mathbb{Z}_p^\ast; \rho, z \leftarrow \mathbb{Z}_q^\ast; \mu = r^2 : (c = (g^\rho, g^z \mu), m, PK)\}.
\]

c. First, we want to prove that, if the DDH assumption is true, then ElGamal is semantically secure; in other words, \(D_0 \approx D_1 \Rightarrow D_{\text{Enc}} \approx D_{\text{Sim}} \). The contrapositive of this is that, if there exists some adversary \(\mathcal{A} \) which can distinguish between \(D_{\text{Enc}} \) and \(D_{\text{Sim}} \) with non-negligible probability \(\epsilon \), we can build an adversary \(\mathcal{B} \) which can distinguish between \(D_0 \) and \(D_1 \) with some non-negligible probability \(\epsilon' \).

We will denote by \(p_{E,0} \) (respectively, \(p_{S,0} \)) as the probability that \(\mathcal{A} \) outputs 0 given an element of \(D_{\text{Enc}} \) (resp., an element of \(D_{\text{Sim}} \)). Assume, without loss of generality, that \(p_{E,0} > p_{S,0} \). We know that we can write \(|p_{E,0} - p_{S,0}| = \epsilon \), and we are trying to show that we can construct a \(\mathcal{B} \) such that

\[
\Pr[x \leftarrow D_0; b \leftarrow \mathcal{B}(x) : b = 0] - \Pr[x \leftarrow D_1; b \leftarrow \mathcal{B}(x) : b = 0]| = \epsilon'(k)
\]

for some non-negligible \(\epsilon'(\cdot) \).

d. To start, we see that \(\mathcal{A} \) takes input of the form \(((g^\alpha, g^\beta \gamma), m, (p, q, g^\chi)) \), and that:

\begin{itemize}
 \item \textbf{Enc} If our input is from \(D_{\text{Enc}} \), then \(\gamma = m \), \(\alpha \) is random, and \(\beta = \alpha s \).
 \item \textbf{Sim} If our input is from \(D_{\text{Sim}} \), then \(\gamma = \mu \), \(\alpha \) is random, and \(\beta \) is random.
\end{itemize}

Likewise, \(\mathcal{B} \) will take input of the form \((p, g, g^\mu, g^\ell) \), where \(\ell = x \gamma \) if we are in \(D_0 \) and random if we are in \(D_1 \).

e. Now, we hopefully see the correlation between these two tuples. On input \((p, g, g^\mu, g^\ell) \), \(\mathcal{B} \) should calculate \(q = \frac{p-1}{\ell} \), then should act like \(\text{Simulator} \) by picking a random \(r \in \mathbb{Z}_p^\ast \) and computing \(\mu = r^2 \). Then, \(\mathcal{B} \) should run \(\mathcal{A} \) on the tuple

\[
(c' = (g^\mu, g^\ell \mu), \mu, PK = (p, q, g^\mu))
\]

If \(\mathcal{B} \)'s input was from \(D_0 \), we know that \(\ell = x \gamma y \) and therefore our tuple looks like

\[
((g^\gamma, g^{x \gamma y} \mu), (p, q, g^\chi))
\]

which (since \(y \) is drawn randomly from \(\mathbb{Z}_q^\ast \)) looks exactly like an element of \(D_{\text{Enc}} \). Thus if \(\mathcal{A} \) outputs 0, so should \(\mathcal{B} \).

Conversely, if \(\mathcal{B} \)'s input was from \(D_1 \), we know \(\ell \) looks like some random \(\beta \) and therefore the tuple looks like

\[
((g^\mu, g^\beta \mu), (p, q, g^\chi))
\]

which looks like it comes from \(D_{\text{Sim}} \). Therefore, if \(\mathcal{A} \) outputs 1, so should \(\mathcal{B} \).
f. We can now formally compute the advantage for \(B \). We refer back to the left-hand side of Equation 1 and see that

\[
\text{LHS of (1)} = \left| \Pr \left[(p, g, g^x, g^y, g^{xy}) \leftarrow D_0; b \leftarrow B(p, g, g^x, g^y, g^{xy}) : b = 0 \right] \right| \\
- \left| \Pr \left[(p, g, g^x, g^y, g^z) \leftarrow D_1; b \leftarrow B(p, g, g^x, g^y, g^z) : b = 0 \right] \right| \\
= \left| \Pr \left[(\ldots) \leftarrow D_0; r \leftarrow \mathbb{Z}_p^*; \mu = r^2; b \leftarrow A((p, q, g, g^\mu), (g^y, g^{xy} \mu)) : b = 0 \right] \right| \\
- \left| \Pr \left[(\ldots) \leftarrow D_1; r \leftarrow \mathbb{Z}_p^*; \mu = r^2; b \leftarrow A((p, q, g, g^\mu), (g^y, g^{xy} \mu)) : b = 0 \right] \right| \\
= \left| \Pr [d \leftarrow D_{\text{Enc}}; b \leftarrow A(d) : b = 0] - \Pr [d \leftarrow D_{\text{Sim}}; b \leftarrow A(d) : b = 0] \right| \\
= \epsilon(k).
\]

Problem 3: Nested Encryption

Proof. Recall that semantic security is equivalent to indistinguishability-security. Assume for the sake of contradiction that our nested encryption scheme \((\text{KeyGen}', \text{Enc}', \text{Dec}')\) is not ind-secure, and thus there exists some PPT adversary \(A' \) that can distinguish between encryptions of messages for \(m_0, m_1 \) with non-negligible advantage. That is, \(C'_b(1^k) \approx C'_b(1^k) \), where

\[
C'_b(1^k) = \left\{ (PK', SK') \leftarrow \text{KeyGen}'(1^k); c' \leftarrow \text{Enc}'(m_b, PK') : (1^k, PK', c', \ell(k)) \right\}.
\]

We will show via a reduction that we can use such a PPT to create an adversary \(A \) that breaks the ind-security of \((\text{KeyGen}, \text{Enc}, \text{Dec})\) with non-negligible advantage.

On input \((1^k, PK, c, \ell(k))\), \(A \) runs \(\text{KeyGen}(1^k) \) to get a keypair \((PK_2, SK_2)\). \(A \) then encrypts \(c \) again with this public key, finding \(z = \text{Enc}(c, PK_2) \). \(A \) runs \(A' (1^k, (PK, PK_2), z, \ell(k)) \) and returns whatever it returns.

If \(A \) was given an encryption \(c \) of \(m_b \), then \(z \) is the encryption \(\text{Enc}'(m_b, (PK, PK_2)) \); thus, \(A' \) is given something from the distribution \(C'_b \) (and, due to the correctness of the encryption scheme, assuredly \textit{not} from the distribution \(C_0(1^k) \)) and will be correct with nonnegligible advantage. But the original cryptosystem was ind-secure, and this is a contradiction; thus, \(A' \) cannot exist, and so \((\text{KeyGen}', \text{Enc}', \text{Dec}')\) must be ind-secure. By the equivalence of indistinguishability security and semantic security, the nested encryption scheme is also semantically secure. \(\Box \)