Problem 1: The Extended Euclidean GCD Algorithm

a.

\[1239 = 735 \cdot 1 + 504 \]
\[735 = 504 \cdot 1 + 231 \]
\[504 = 231 \cdot 2 + 42 \]
\[231 = 42 \cdot 5 + 21 \]
\[42 = 21 \cdot 2 + 0 \]

Therefore, \(\text{gcd}(1239, 735) = 21 \).

b.

\[62 = 27 \cdot 2 + 8 \]
\[27 = 8 \cdot 3 + 3 \]
\[8 = 3 \cdot 2 + 2 \]
\[3 = 2 \cdot 1 + 1 \]

Working backwards tells us that

\[1 = 3 - 1(2) \]
\[= 3 - 1(8 - 2(3)) = 3(3) - 1(8) \]
\[= 3(27 - 3(8)) - 1(8) = 3(27) - 10(8) \]
\[= 3(27) - 10(62 - 2(27)) = 23(27) - 10(62) \]

So we find that \(L = 23 \) and \(K = -10 \).

c. We actually already have this from part (b), it is just \(L \equiv 23 \pmod{62} \).

d.

\[1245 = 143 \cdot 8 + 101 \]
\[143 = 101 + 42 \]
\[101 = 2 \cdot 42 + 17 \]
\[42 = 2 \cdot 17 + 8 \]
\[17 = 2 \cdot 8 + 1 \]
Again, we work backwards to find

\[
1 = 17 - 1(2 \cdot 8) \\
= 17 - 2(42 - 2(17)) = 5(17) - 2(42) \\
= 5(101 - 2 \cdot 42) - 2(42) = 5(101) - 12(42) \\
= 5(143 - 42) - 12(42) = 5(143) - 17(42) \\
= 5(143) - 17(143 - 101) = -12(143) + 17(101) \\
= -12(143) + 17(1245 - 8 \cdot 143) = -148(143) + 17(1245) \\
\]

So, \(1245^{-1} \equiv 17 \text{ mod } 143\).

Problem 2: Practice with the Chinese Remainder Theorem

a. Using the same logic as in problem 1, we find that \(a_1 = 467\) and \(b_1 = -4\).

b. Here, we find that \(a_2 = 206\) and \(b_2 = -13\).

c. Here, we find \(a_3 = 99\) and \(b_3 = -32\).

d. We compute \(n = 7 \cdot 19 \cdot 43 = 5719\), and

\[
c_1 = \frac{n}{7} = 817 \\
c_2 = \frac{n}{19} = 301 \\
c_3 = \frac{n}{43} = 133
\]

Then, using our answers from (a), (b), and (c), we find that

\[
x = 4c_1b_1 + 11c_2b_2 + 5c_3b_3 \\
= 4 \cdot 817 \cdot -4 + 11 \cdot 301 \cdot -13 + 5 \cdot 133 \cdot -32 \\
= -77395 \\
\equiv 2671 \pmod{5719}
\]

Problem 3: The Blum TDP

a. *Proof.*

(a) First, let’s assume that \(x\) is a square modulo \(p\). This means that there is some \(y\) such that \(y^2 \equiv x \pmod{p}\). Then

\[
x^{p-1} \equiv (y^2)^{p-1} \pmod{p} \\
\equiv y^{p-1} \pmod{p} \\
\equiv 1 \pmod{p}
\]

by Fermat’s Little Theorem. To show the other direction, consider some \(x\) that is not a square modulo \(p\). Then if \(g\) is some generator of the group, we know we can write \(x\) as
Since \(p \) is a generator means its order is \(p - 1 \), and so \(g^{\frac{p-1}{2}} \) cannot be equal to 1 (mod \(p \)).

(b) Since \(p \equiv 3 \pmod{4} \) we can write \(p = 3 + 4m \), which means that \(p - 1 = 2 + 4m \) and therefore

\[
(-1)^{\frac{p-1}{2}} \equiv (-1)^{2m+1} = -1.
\]

By what we just proved, this implies that \(-1\) cannot be a square mod \(p \).

(c) First, we must show that \(x \) has a square root that is a square. We know that \(x \) is a square and, because \(p \) is prime, it has only two square roots mod \(p \). Let \(y \) be one square root of \(x \), and \(z \) be the other. Because

\[
(-z)^2 \equiv (-1)^2 \cdot z^2 \equiv x \pmod{p},
\]

and because \(z \not\equiv -z \pmod{p} \), we know that \(y = -z \). All we need to do now is show that \(z \) is a square if and only if \(y \) is not a square.

Suppose \(y \) is not a square. Then

\[
z^{\frac{p-1}{2}} \equiv (-y)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \cdot y^{\frac{p-1}{2}} \pmod{p}.
\]

Because \(p \equiv 3 \pmod{4} \), we know that \((-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}\) by what we have shown in part (b). We also know that

\[
(y^{\frac{p-1}{2}})^2 \equiv y^{p-1} \equiv 1 \pmod{p},
\]

so \(y^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p} \). But \(y \) is not a square, so \(y^{\frac{p-1}{2}} \) must equal \(-1\). This means that we have \(z^{\frac{p-1}{2}} \equiv (-1) \cdot (-1) \equiv 1 \pmod{p} \), and so \(z \) is a square.

Suppose \(y \) is a square. Then

\[
z^{\frac{p-1}{2}} \equiv (-y)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \cdot y^{\frac{p-1}{2}} \pmod{p}.
\]

Because \(y \) is a square, and because \(\frac{p-1}{2} \) is odd, we know that \(z^{\frac{p-1}{2}} \equiv (-1) \cdot (1) \equiv -1 \pmod{p} \), and so \(z \) is not a square. Therefore, exactly one of \(y, z \) is a square, and so \(x \) has exactly one square root that is also a square.

We know that \(x^2 \equiv (x \pmod{p})^2 \pmod{p} \), and similarly that \(x^2 \equiv (x \pmod{q})^2 \pmod{q} \). This means that we could use the Chinese Remainder Theorem to reconstruct \(x^2 \pmod{pq} \) from the values \(x^2 \pmod{p} \) and \(x^2 \pmod{q} \). Because the map induced by the CRT is one-to-one, \(x^2 \pmod{pq} \) would be equal to \(y^2 \pmod{pq} \) for some \(y \) if and only if \(x^2 \equiv y^2 \pmod{pq} \) and \(x^2 \equiv y^2 \pmod{q} \). By part 3, we know that if \(x \) and \(y \) are both QRs, then \(x \equiv y \pmod{p} \) and \(x \equiv y \pmod{q} \). This means that \(x \) and \(y \) are the same. So if any two QRs \(x \) and \(y \) map to the same value, then we know that \(x \equiv y \pmod{pq} \). This shows that the function is one-to-one. This means that each value in the domain maps to a unique value of the range. Because this function maps from QRs to QRs, the domain is the range, and so every value in the range must have a value in the domain that produced it. Therefore, \(f_N(x) \) is a permutation.
b. The fact that \(a \) is a quadratic residue tells us that
\[
a^{\frac{p-1}{2}} \equiv a^{2m+1} \equiv 1 \pmod{p}.
\]

It immediately follows that
\[
(a^{m+1})^2 \equiv a^{2m+2} \equiv a \cdot a^{2m+1} \equiv a \pmod{p}.
\]

c. Given some input \(y \), we find a square root of \(y \pmod{p} \) and a square root of \(y \pmod{q} \) using part b. Then we use the CRT to get the square root of \(y \pmod{N} \).

d. We know \(x^2 - y^2 \equiv 0 \pmod{N} \), so \(N \mid (x + y)(x - y) \). \(N \) cannot divide \(x + y \) or \(x - y \) because \(x \not\equiv \pm y \pmod{N} \). Therefore, since \(N = pq \), where \(p \) and \(q \) are prime, one of \(\{p, q\} \) divides \(x + y \) and the other divides \(x - y \), but \(pq \) divides neither. This means that, if we compute \(\gcd(N, x - y) \), it must be either \(p \) or \(q \), which we can of course use to fully factor \(N \).

e. To finish the reduction, if \(y \not\equiv \pm x \), we can use part b. to factor \(N \). If \(y = \pm x \), \(A \) just fails.

Suppose \(A \) has non-negligible probability \(\epsilon \) of breaking the Blum TDP. For a randomly chosen input \(x \leftarrow \mathbb{Z}_N^* \) to \(B \), \(A \)'s input \(x^2 \pmod{N} \) is a random element of \(\mathbb{QR}_N \), so \(A \) will succeed with probability \(\epsilon \). If \(A \) succeeds, \(A \) outputs some square root \(y \) of \(x^2 \). Since \(x^2 \) has four square roots, and \(x \) was chosen randomly from \(\mathbb{Z}_N^* \), the probability that \(x \not\equiv \pm y \pmod{N} \) is \(\frac{1}{4} \). Therefore, if \(A \) succeeds, \(B \) succeeds with probability \(\frac{1}{2} \), so \(B \) succeeds with non-negligible probability \(\frac{\epsilon}{2} \).

Problem 4: One-Way Functions Under XOR

Let \(f_1 \) and \(f_2 \) be OWFs with the same-size output. Now consider \(f(x) = f_1(x_1) \oplus f_2(x_2) \), where \(x = x_1 \circ x_2 \) so that \(|x_1| = \lceil \frac{|x|}{2} \rceil \), and \(|x_2| = \lfloor \frac{|x|}{2} \rfloor \), and when XORing strings of unequal length, you can pretend that blank characters at the end of the shorter strings are 0’s.

a. Assuming that length-preserving one-way functions exist, give an example of OWFs \(f_1 \) and an \(f_2 \) such that \(f \) is a OWF, and prove that in this case \(f \) is a OWF. You must also show that your choices of \(f_1 \) and \(f_2 \) are OWFs.

Let \(f' : \{0, 1\}^n \to \{0, 1\}^n \) be a OWF. Then consider \(f_1(x) = f'(x) \circ 0^{|x|} \) and \(f_2(x) = 0^{|x|} \circ f'(x) \).

To see that \(f_1 \) is a OWF, assume that it is not and that \(A \) inverts \(f_1 \) with non-negligible probability \(\nu \). Then we can construct \(B \) to invert \(f' \) as follows: on input \(y \), \(B \) sets \(y' = y \circ 0^{|y|} \), and passes \(y' \) to \(A \). \(B \) then outputs whatever \(A \) outputs.

With probability \(\nu \), \(A \) will return an \(x' \) such that \(f_1(x') = y \circ 0^{|y|} \). But by definition of \(f_1 \), we also have that \(f_1(x') = f'(x') \circ 0^{|y|} \), and so \(y \circ 0^{|y|} = f'(x') \circ 0^{|y|} \Rightarrow f'(x') = y \), which means that with non-negligible probability \(\nu \), \(B \) outputs an \(x' \) such that \(f'(x') = y \).

We can write a similar argument for why \(f_2 \) is a OWF: on input \(y \), \(B \) will construct \(y' = 0^{|y|} \circ y \), pass \(y' \) to \(A \), and output whatever \(A \) outputs. The analysis is analogous to the one for \(f_1 \).
Now we will show that given the above choice of \(f_1 \) and \(f_2 \), \(f \) is a OWF. First, assume that it is not, and that it is inverted by \(A \). We then construct \(B \) to invert \(f' \): on input \(y \), \(B \) sets \(y' = y \circ f'(r) \), where \(r \leftarrow \{0,1\}^{|y|} \). Then \(B \) passes \(y' \) to \(A \). If \(A \) outputs \(x' \), then \(B \) outputs the first half of \(x' \).

With probability \(\nu \), \(A \) will output an \(x' \) such that \(f(x') = y \circ f'(r) \). But by definition of \(f \), we also have that \(f(x') = f_1(x_1') \oplus f_2(x_2') \) (where \(x_1 \circ x_2 = x \)). Given our definitions of \(f_1 \) and \(f_2 \), this gives us:

\[
\begin{align*}
 f(x') & = f_1(x_1') \oplus f_2(x_2') \\
 & = (f'(x_1) \circ 0^{|y|}) \oplus (0^{|y|} \circ f'(x_2)) \\
 & = (f'(x_1) \oplus 0^{|y|}) \circ (f'(x_2) \oplus 0^{|y|}) \\
 & = f'(x_1) \circ f'(x_2)
\end{align*}
\]

So \(A \) outputs an \(x' \) such that \(f(x') = y \circ f'(r) = f'(x_1') \circ f'(x_2') \). But we know that \(f'(r) = f'(x_2') \), which means that \(y = f'(x_1') \). Thus, with probability \(\nu \), \(B \) outputs \(x_1' \) such that \(y = f'(x_1') \).

b. Assuming that length-preserving one-way functions exist, give an example of OWFs \(f_1 \) and \(f_2 \) such that \(f \) is NOT a OWF, and prove that in this case \(f \) is not a OWF. You must also show that your choices of \(f_1 \) and \(f_2 \) are OWFs.

Let \(f' : \{0,1\}^n \to \{0,1\}^n \) be a OWF. Then let \(f_1 : \{0,1\}^k \to \{0,1\}^{2k} \) be defined as \(f_1(x) = f'(x_1) \circ (x_1 \oplus x_2) \circ 0^k \), and let \(f_2 : \{0,1\}^k \to \{0,1\}^k \) be defined as \(f_2(x) = (x_1 \oplus x_2) \circ f'(x_1) \circ 0^k \), where \(x_1 \circ x_2 = x \).

To see that \(f_1 \) is a OWF, assume that it is not and that \(A \) inverts \(f_1 \) with non-negligible probability \(\nu \). Then we can construct \(B \) to invert \(f' \) as follows: on input \(y = f'(x) \), where \(y \in \{0,1\}^n \), \(B \) chooses \(r_1, r_2 \leftarrow \{0,1\}^n \), and sets \(y' = y \circ (r_1 \oplus r_2) \circ 0^{2n} \). Then \(B \) passes \(y' \) to \(A \). If \(A \) outputs \(x' \), then \(B \) outputs \(x_1' \), the first half of \(x' \).

With probability \(\nu \), \(A \) will return an \(x' \) such that \(f_1(x') = y' = y \circ (r_1 \oplus r_2) \circ 0^{2n} \). But by definition of \(f_1 \), we also have that \(f_1(x') = f'(x_1') \circ (x_1' \oplus x_2') \circ 0^{2n} \). This means that \(y \circ (r_1 \oplus r_2) \circ 0^{2n} = f'(x_1') \circ (x_1' \oplus x_2') \circ 0^{2n} \), and so \(y = f'(x_1') \). Thus, with non-negligible probability \(\nu \), \(B \) outputs an \(x_1' \) such that \(f'(x_1') = y \).

We can write a similar argument for why \(f_2 \) is a OWF: on input \(y = f'(x) \), where \(y \in \{0,1\}^n \), \(B \) will choose \(r_1, r_2 \leftarrow \{0,1\}^n \), will set \(y' = (r_1 \oplus r_2) \circ y \circ 0^{2n} \), and will pass \(y' \) to \(A \). Again, \(B \) outputs the first half of the \(x' \) that \(A \) outputs. The analysis is analogous to the one given for \(f_2 \).

Now we will show that for the above choice of \(f_1 \) and \(f_2 \), \(f \) is not a OWF. Assume that we have \(y = f(x) \) (where \(x = x_1 \circ x_2 \circ x_3 \circ x_4 \), and \(y \in \{0,1\}^n \)), and we would like to produce \(x' \) such that \(f(x') = y \). First, let’s denote \(f(x) = f(x_1 \circ x_2 \circ x_3 \circ x_4) \) as \(f(x) = w_1 \circ w_2 \circ w_3 \), where \(|w_1| = |w_2| = \frac{n}{4} \) and \(|w_3| = \frac{n}{2} \).

HW 4 – Solutions-5
We then choose $x'_1, x'_3 \leftarrow \{0,1\}^n$. Then set $x'_2 = f'(x'_3) \oplus x'_1 \oplus w_2$, and $x'_4 = f'(x'_1) \oplus x'_3 \oplus w_1$. Now consider $x' = x'_1 \circ x'_2 \circ x'_3 \circ x'_4$:

\[
\begin{align*}
\text{f}(x') &= \text{f}(x'_1 \circ x'_2 \circ x'_3 \circ x'_4) \\
&= \text{f}_1(x'_1 \circ x'_2) \oplus \text{f}_2(x'_3 \circ x'_4) \\
&= f'(x'_1) \circ (x'_1 \oplus x'_2) \circ (x'_3 \oplus x'_4) \circ f'(x'_3) \circ 0^n \\
&= (f'(x'_1) \oplus x'_1 \oplus x'_4) \circ (x'_1 \oplus x'_2 \oplus f'(x'_3)) \circ (0^n \oplus 0^n) \\
&= (f'(x'_1) \oplus x'_3 \oplus f'(x'_3)) \circ (x'_1 \oplus x'_2 \oplus f'(x'_3)) \\
&= (0^n \oplus w_1) \circ (0^n \oplus w_2) \\
&= w_1 \circ w_2
\end{align*}
\]

But then $f(x') = w_1 \circ w_2 = y$, and so we have successfully inverted f. Thus, f cannot be an OWF for this choice of f_1, f_2.

HW 4 – Solutions-6