1 GGM and Prefix-Constrained PRFs

Solution written by Joshua Liebow-Feeseer.

a. $G_0(K)$.

b. Define $\text{Constrain}(K, \pi)$ as follows. Let $\pi = \pi_1 \pi_2 \ldots \pi_n$, where each $\pi_i \in \{0, 1\}$, and $n = |\pi|$. Output $K_{\pi} = G_{\pi_n}(\ldots G_{\pi_2}(G_{\pi_1}(K)) \ldots)$.

c. Define $\text{Eval}(K_{\pi}, x)$ as follows. Let $x = x_1 x_2 \ldots x_k$ where each $x_i \in \{0, 1\}$. Recall that $n < k$ is the length of the prefix π. If $x_1 \ldots x_n \neq \pi$, fail. Otherwise, output

$$G_{x_k}(\ldots G_{x_{n+2}}(G_{x_{n+1}}(K_{\pi})) \ldots).$$

This is correct because $K_{\pi} = G_{\pi_n}(\ldots G_{\pi_2}(G_{\pi_1}(K)) \ldots)$ and π is a prefix of x, so

$$G_{x_k}(\ldots G_{x_{n+2}}(G_{x_{n+1}}(K_{\pi})) \ldots) = G_{x_k}(\ldots G_{x_{n+2}}(G_{x_{n+1}}(G_{\pi_n}(\ldots G_{\pi_2}(G_{\pi_1}(K)) \ldots))) \ldots)$$

$$= F(K, x_1 x_2 \ldots x_k).$$

d. Proof 1 (Proof by contradiction) Assume that this construction is not spring-break-secure, and thus that there exists a PPT algorithm, \mathcal{A}, capable of distinguishing between the two experiments with non-negligible probability.

Given this, we want to construct \mathcal{B}, an algorithm capable of breaking GGM, as follows. Let \mathcal{B} be given oracle access to $\mathcal{O}_{\mathcal{B}}$, which is either $F(s, \cdot)$ for $s \leftarrow \{0, 1\}^k$, or a random oracle. \mathcal{B} runs \mathcal{A} until \mathcal{A} chooses a prefix π, at which point \mathcal{B} chooses $K_{\pi} \leftarrow \{0, 1\}^k$, and gives it to \mathcal{A}.

On queries $x \in X_\pi$ from \mathcal{A}, \mathcal{B} queries its own oracle and responds with $\mathcal{O}_{\mathcal{B}}(x)$. On any queries $x \notin X_\pi$, \mathcal{B} fails. \mathcal{B} outputs what \mathcal{A} outputs.

To begin our analysis, we need a simple lemma.

Lemma 1. Given a fixed π and K ($|\pi| \leq k$), the following two distributions are indistinguishable:

$$D_0 = \{s \leftarrow \{0, 1\}^k : s\}$$

$$D_1 = \{s \leftarrow \{0, 1\}^k : \text{Constrain}(s, K)\}$$
Proof 2 First, we observe that the following three distributions are indistinguishable from one another:

\[
D'_0 = \{ s \leftarrow \{0,1\}^k : G_0(s) \} \\
D'_1 = \{ s \leftarrow \{0,1\}^k : s \} \\
D'_2 = \{ s \leftarrow \{0,1\}^k : G_1(s) \},
\]

where \(G_0 \) and \(G_1 \) apply \(G \) to the seed and then return the first or second half of the output, respectively. Since \(G \) is a PRG, its output is indistinguishable from random. Thus, half of its output is also indistinguishable from a random string of the same length (otherwise we could distinguish \(G \) from random by only looking at half of its output). Since \(D'_0 \approx D'_1 \) and \(D'_1 \approx D'_2 \), by transitivity of indistinguishability we have \(D'_0 \approx D'_2 \).

Constrain is simply a sequence of applications of \(G_0 \) or \(G_1 \) with a randomly generated seed. By our previous argument, the intermediate state after only one application of \(G_0 \) or \(G_1 \) is indistinguishable from random. Thus, the next application of \(G_0 \) or \(G_1 \) is applied to a seed which is indistinguishable from random, so its output is also indistinguishable from random. This continues for the rest of the \(G_0 \)s and \(G_1 \)s until the output, \(K_\pi \), which is thus also indistinguishable from random. (Note that the number of applications of \(G_0 \) or \(G_1 \) is polynomial in \(k \).)

Given this lemma, we are ready to proceed.

Consider the case in which \(B \)'s input is a real instance of GGM. Then \(B \) will respond to \(A \)'s queries exactly like the constrained PRF in the wild: \(B \) only responds to queries when \(x \in X_\pi \), and when it does respond, it responds using \(\mathcal{O}_B \), which is, in these cases, equivalent to \(\text{Eval} (\text{Constrain}(K,\pi), x) \) (although \(K \) is not actually known to \(B \)). Importantly, the value of \(K_\pi \) given to \(A \) (i.e. a random string) is, as shown in Lemma 1, indistinguishable from a legitimate output of \(\text{Constrain}(K, \pi) \). Thus, \(A \) cannot distinguish between its current interaction and \(\text{Exp 1} \) as defined in the homework prompt. Thus, \(B \) is correct in this case with exactly the same probability that \(A \) is in \(\text{Exp 1} \).

Consider now the case in which \(B \) is accessing a random oracle. Then \(B \) is also acting like a random oracle to \(A \) (albeit one constrained to only accept inputs from \(X_\pi \)). Further, as we showed above, the value \(K_\pi \) that is given to \(A \) is indistinguishable from the output of \(\text{Constrain}(K, \pi) \). Thus, \(A \)'s inputs in this case are indistinguishable from the input it would get if it were actually run in \(\text{Exp 2} \) as defined in the homework prompt. Thus, \(B \) will guess correctly in this case with exactly the same probability that \(A \) does in \(\text{Exp 2} \).

Thus, \(B \) behaves with exactly the same probabilistic behavior as \(A \), and since \(A \) can distinguish \(\text{Exp 1} \) from \(\text{Exp 2} \), \(B \) can distinguish between its two experiments (\(\text{Exp 1} \)
2 Symmetric Encryption from PRP

a. An adversary A can choose m_0 and m_1 and then ask the encryption oracle to encrypt both of them, obtaining c_0 and c_1. Then, after the challenger encrypts one of m_0 and m_1 to produce c, since PRPs are deterministic, A can just check whether $c = c_0$ or $c = c_1$.

b. (a) A’s success probability in experiment E_2 is $\frac{1}{2}$ because the ciphertext it sees is totally unrelated to the challenger’s choice of b. Thus, the best the adversary can hope to do is randomly guess whether $b = 1$ or 0.

(b) Suppose there were an adversary A who could do non-negligibly better in E_1 than in E_2. We could then use A to construct a ppt B that could distinguish the output of a truly random permutation from random bits with non-negligible probability. B would simply run A a polynomial number of times, and if A’s success at guessing b were $> \frac{1}{2} + \epsilon(k)$ where $\epsilon(k)$ is non-negligible, then we would know we were in experiment 1 instead of 2. Since the only difference between experiment 2 and experiment 1 is that E_1 uses a truly random permutation, while E_2 just used random bits. So we would be able to distinguish the output of a truly random permutation from random bits with non-negligible probability, which contradicts the definition of a truly random permutation. Therefore, no adversary can do non-negligibly better in E_1 than in E_2.

(c) Now, suppose there were an adversary A who could do non-negligibly better in E_0 than in E_1. As in part (b) by running A a polynomial number of times, we could use it to distinguish between experiments 0 and 1 with non-negligible probability. We would thus be able to tell the difference between a pseudorandom permutation and a truly random permutation with non-negligible probability. This contradicts the definition of a pseudorandom permutation.

c. After seeing the ciphertext $c = (a_1, a_2)$, an attacker A could simply submit $c' = (a_2, a_1)$ to the decryption oracle, which would then output $m_2 \circ m_1$. The attacker could then reconstruct $m = m_1 \circ m_2$ from this.

3 Naor-Reingold PRF

a. Let n_u be the value stored at node corresponding to string u. Then the value at $n_{u \circ b}$ is computed as $n_u^{s_b}$.

Homework 8 Solutions
b. For H_0 all the tree nodes are set exactly as described in part (a), hence $H_0 = F_s$. In the case of H_k all leaves of the tree are assigned random values, hence H_k is a truly random function.

c. Since during $H_{i,0}$ no query has been made, the nodes at level i are assigned random group elements and random elements (s_{i+1}, \ldots, s_k) are selected to answer queries. After $p(k)$ queries $H_{i,p(k)}$ has random elements associated with nodes in levels 1 to $i + 1$. The value associated with string x is computed as $r \prod_{\ell=i+2}^{k} x_\ell$, where r is a random group element assigned to a node corresponding to string $x_1 x_2 \ldots x_{i+1}$. Hence, $H_{i,p(k)} = H_{i+1}$.

d. Let A be the adversary that can distinguish between $H_{i,j}$ and $H_{i,j+1}$ with non-negligible probability $\epsilon(k)$. We now construct a reduction B that takes as input a tuple (g, g^a, g^b, g^c) and uses A to distinguish if $g^c = g^{ab}$ or g^c is a random element of G. Until A makes the jth query the reduction behaves as H_{i+1} on A’s queries. Let x be the jth query. B sets the node that corresponds to $x_1 \ldots x_i$ to g^a, and nodes $x_1 \ldots x_i 0$ and $x_1 \ldots x_i 1$ to g^b and g^c, correspondingly. From now on, B behaves like H_i. B then outputs A’s output.

If g^c is g^{ab} then B behaves like $H_{i,j+1}$. If g^c is a random element, then B behaves like $H_{i,j}$. Hence, B’s probability of success is the same as A’s.