This is a non-collaborative assignment. You may not discuss the problems with any other students. The only resources you may use are the useful links given on the course website, the lecture notes, and the course staff.

1 Midterm (MI) Security

In this problem, you will consider two notions of security for symmetric-key encryption schemes. Recall that in a symmetric-key encryption scheme, Alice and Bob have the same secret key sk. There is no public key.

Definition 1 (MI6 security) A symmetric-key encryption scheme $(KeyGen, Enc, Dec)$ is MI6-secure if for all p.p.t. algorithms A, there is a negligible function ν such that:

$$
\Pr[\text{sk} \leftarrow \text{KeyGen}(1^k); (m_0, m_1, s) \leftarrow A(1^k); b \leftarrow \{0, 1\}; c \leftarrow \text{Enc}(sk, m_b); b' \leftarrow A(1^k, c, s) : b' = b] \leq \frac{1}{2} + \nu(k)
$$

The s produced by A can be thought of as a form of state or memory between A’s two runs.

In other words, an encryption scheme is MI6-secure if no p.p.t. adversary can distinguish between encryptions of a chosen m_0 and m_1 with nonnegligible advantage.

Definition 2 (MI7 security) A symmetric-key encryption scheme $(KeyGen, Enc, Dec)$ is MI7-secure if for all p.p.t. algorithms A, there is a negligible function ν such that:

$$
\Pr[sk \leftarrow \text{KeyGen}(1^k); (m_0, m_1, s) \leftarrow A(1^k); b \leftarrow \{0, 1\}; c_0 \leftarrow \text{Enc}(sk, m_0); c_1 \leftarrow \text{Enc}(sk, m_1); z \leftarrow \text{if } b = 0 \text{ then } (c_0, c_1) \text{ else } (c_1, c_0); b' \leftarrow A(1^k, z, s) : b' = b] \leq \frac{1}{2} + \nu(k)
$$

In contrast to MI6 security, an encryption scheme is MI7-secure if no p.p.t. adversary can distinguish between (c_0, c_1) and (c_1, c_0) for chosen messages m_0 and m_1 with nonnegligible advantage.

Consider the relationship between MI6 and MI7 security. Does one necessarily imply the other? Are they equivalent? Prove your answer using reductions and/or counterexamples.
2 More Fun with PRGs

Let $G : \{0,1\}^k \rightarrow \{0,1\}^{2k}$ be a pseudorandom generator.

a. Define $G_a : \{0,1\}^k \rightarrow \{0,1\}^{4k}$ as follows:

$$G_a(x) = G(G(x))$$

Prove that G_a is a PRG or provide a counterexample to the contrary.

b. Define $G_b : \{0,1\}^k \rightarrow \{0,1\}^{\text{poly}(k)}$ as follows:

$$G_b(x) = \text{the number of 0's in } G(x), \text{ written as a poly}(k)\text{-bit string}$$

Prove that G_b is a PRG or provide a counterexample to the contrary.

3 Even More Fun with OWFs

a. Let $g : \{0,1\}^k \rightarrow \{0,1\}^k$ be a one-way permutation. Define f_a as:

$$f_a(x) = g(x) \mod 2^{k-1}$$

Assuming that OWPs exist, does it follow that f_a is a OWF? If so, prove it. If not, give a counterexample.

b. Let $f : \{0,1\}^k \rightarrow \{0,1\}^k$ be a length-preserving one-way function. Define f_b as:

$$f_b(x) = f(x) \mod 2^{k-1}$$

Assuming that length-preserving OWFs exist, does it follow that f_b is a OWF? If so, prove it. If not, give a counterexample.

c. Consider the following proof that f_b is not necessarily a OWF. Does it hold? If not, explain what is wrong with the reasoning.

Proof: As we saw in lecture, $f(f(x))$ is not necessarily a OWF because we can construct a OWF f such that $f(f(x))$ is an all-to-one mapping, meaning that every x maps to the all-zero string.

Let $f_1 : \{0,1\}^k \rightarrow \{0,1\}^k$ be a OWF, and for every $i \in \{1,2,\ldots,k\}$, let:

$$f_{i+1}(x) = f_i(x) \mod 2^{k-i}$$

Note that leading zeros are kept when reducing mod 2^{k-i}. Then since $f_{k+1}(x)$ is always the all-zero string, it is easy to invert. By the hybrid argument, there must exist some $i \in \{1,2,\ldots,k\}$ such that f_i is easy to invert but f_{i-1} is a OWF. This f_i is a counterexample to f_b necessarily being a OWF. □
4 Breaking our Assumptions

In both RSA and QR-based cryptosystems, we have implicitly assumed that factoring the public value $N = pq$ is hard. Specifically, it has been crucial that an adversary cannot efficiently learn $\varphi(N) = (p-1)(q-1)$. However, it is not even necessary for the adversary to learn $\varphi(N)$ exactly to break the scheme. There are in fact whole classes of values related to $\varphi(N)$ that are sufficient to mount an equally powerful attack.

a. **RSA warmup**: Given an RSA public modulus $N = pq$, public exponent e, and the prime factors p and q of N, show how to efficiently compute the private exponent d.

b. Given an RSA public modulus $N = pq$, public exponent e, and $\lambda(N) = \alpha\varphi(N)$ for some unknown positive integer α, show how to efficiently compute an exponent d' which allows you to invert the RSA trapdoor permutation.

c. **QR warmup**: Recall that QR_N denotes the set of quadratic residues mod N. We use QNR_N to denote the set of elements mod N that are quadratic nonresidues both mod p and mod q. Given a Blum integer $N = pq$ with $p \equiv q \equiv 3 \pmod{4}$ as well as its prime factors p and q, show how to efficiently distinguish between elements of QR_N and QNR_N.

d. Given a Blum integer $N = pq$ with $p \equiv q \equiv 3 \pmod{4}$ as well as $\lambda(N) = \alpha\varphi(N)$ for some unknown positive odd integer α, show how to efficiently distinguish between elements of QR_N and QNR_N.

e. Can you extend your scheme from part (d) to efficiently handle an even α? You may assume that the bit length of α is polynomial in the security parameter k. If so, explain why your scheme works and how to proceed when you don’t know whether α is even or odd. If not, argue why such a scheme is impossible.
5 Hardcore Bits and OWFs

Consider the following definition of a hardcore bit:

Definition 3 (Hardcore bit) Let KeyGen be a key generation algorithm. Let B_{pk} be an efficiently computable Boolean function $B_{pk} : D_{pk} \rightarrow \{0, 1\}$. Note that potentially both B_{pk} and the domain D_{pk} depend on the public key $pk \leftarrow \text{KeyGen}(1^k)$. Let $f_{pk} : D_{pk} \rightarrow R_{pk}$ be any efficiently computable function from the domain D_{pk} to the range R_{pk}. B_{pk} is a hardcore bit of f_{pk} if the following two distributions are indistinguishable:

$$D_0(1^k) = \{ pk \leftarrow \text{KeyGen}(1^k); x \leftarrow D_{pk} : (f_{pk}(x), B_{pk}(x)) \}$$

$$D_1(1^k) = \{ pk \leftarrow \text{KeyGen}(1^k); x \leftarrow D_{pk} : (f_{pk}(x), B_{pk}(x) \oplus 1) \}$$

Show that any injective (one-to-one) function that has a hardcore bit must be one-way.

Note: To convince yourself that this is true, it may be helpful to try to think of a many-to-one function with a hardcore bit that is not one-way.