Overall picture:

Alice

Agree on f

Bob

$x \rightarrow$ protocol for f $\rightarrow y$

$f(x, y)$

Security (informal): Bob learns nothing except $f(x, y)$.
Alice learns nothing.

For a formal definition, see the universal composable framework paper (Canetti 2000).

Protocol

1. Alice proposes an "encrypted circuit" for f, and sends it to Bob. She convinces Bob that the circuit is correct.

2. Alice and Bob run on OT protocol s.t. Bob learns the keys corresponding to his y.

3. Alice sends Bob the keys corresponding to her x. She convinces Bob they are correct.

4. Bob evaluates the encrypted circuit and outputs $f(x, y)$.

Building block: cryptosystem that requires two keys. You should learn nothing with only one key.
Encrypted AND gate:

\[
\begin{array}{c|c|c|c}
0 & 0 & 0 & \text{Enc}\left(\left(K_1^0, K_2^0\right), K_3^0\right) \\
0 & 1 & 0 & \text{Enc}\left(\left(K_1^0, K_2^1\right), K_3^0\right) \\
1 & 0 & 0 & \text{Enc}\left(\left(K_1^1, K_2^0\right), K_3^0\right) \\
1 & 1 & 1 & \text{Enc}\left(\left(K_1^1, K_2^1\right), K_3^1\right) \\
\end{array}
\]

randomly permute

Revised Protocol

1. Alice sends \((C_1, C_2, C_3, C_4)\) to Bob.

2. Bob learns \(K_2^0\) via OT.

3. Bob learns \(K_1^x\).

4. Bob decrypts the ciphertext corresponding to row \(x\ y\). He outputs the result, \(\text{AND}(x,y)\).

To encrypt the whole circuit, Alice picks keys for every wire \(i\), \((K_i^0, K_i^1)\). Let the \(j^{th}\) gate have truth table \((t_{00}, t_{01}, t_{10}, t_{11})\). Take input wires \(W_{j,0}\) and \(W_{j,1}\), and output wire \(W_{j,3}\). The \(j^{th}\) encrypted gate is:

\[
\begin{align*}
t_{00} & \Rightarrow \text{Enc}\left(\left(K_{W_{j,0}}^0, K_{W_{j,1}}^0\right), K_{W_{j,3}}^0\right) \\
t_{01} & \Rightarrow \text{Enc}\left(\left(K_{W_{j,0}}^0, K_{W_{j,1}}^1\right), K_{W_{j,3}}^0\right) \\
t_{10} & \Rightarrow \text{Enc}\left(\left(K_{W_{j,0}}^1, K_{W_{j,1}}^0\right), K_{W_{j,3}}^1\right) \\
t_{11} & \Rightarrow \text{Enc}\left(\left(K_{W_{j,0}}^1, K_{W_{j,1}}^1\right), K_{W_{j,3}}^1\right)
\end{align*}
\]
Another type of secure 2PC for set intersection:

Alice
\[A = \{ a_1, a_2, \ldots, a_k \} \]

Bob
\[\{ b \} = B \]

\[C = A \cap B \]

Alice picks a polynomial \(p_A \) s.t. \(p_A(a_i) = 0 \quad \forall i \)
\[p_A(x) \neq 0 \quad \forall x \text{ s.t. } x \neq a_i \quad \forall i \]

(modulo a large enough \(q \))

Let \(p_A(x) = d_0 + d_1 x + d_2 x^2 + \ldots + d_k x^k \). Use additively homomorphic encryption, so \(\widehat{x} \oplus \widehat{y} = \widehat{x+y} \), where boxes denote encryption.

Alice
\[d_0, d_1, \ldots, d_k \]

Bob

Compute \(d_i b \) via repeated doubling.

\[d_0 + d_1 b + d_2 b^2 + \ldots + d_k b^k \]

which is \(p_A(b) \).

Pick a random \(r \).

\[p_A(b) \cdot r \]

\[p_A(b) \cdot r \equiv 0 \]